1
|
Chen R, Kayrouz CS, McAmis E, Clark DS, Hartwig JF. Carbonic Anhydrase Variants Catalyze the Reduction of Dialkyl Ketones with High Enantioselectivity. Angew Chem Int Ed Engl 2024; 63:e202407111. [PMID: 38955771 DOI: 10.1002/anie.202407111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Human carbonic anhydrase II (hCAII) naturally catalyzes the reaction between two achiral molecules-water and carbon dioxide-to yield the achiral product carbonic acid through a zinc hydroxide intermediate. We have previously shown that a zinc hydride, instead of a hydroxide, can be generated in this enzyme to create a catalyst for the reduction of aryl ketones. Dialkyl ketones are more challenging to reduce, and the enantioselective reduction of dialkyl ketones with two alkyl groups that are similar in size and electronic properties, is a particularly challenging transformation to achieve with high activity and selectivity. Here, we show that hCAII, as well as a double mutant of it, catalyzes the enantioselective reduction of dialkyl ketones with high yields and enantioselectivities, even when the two alkyl groups are similar in size. We also show that variants of hCAII catalyze the site-selective reduction of one ketone over the other in an unsymmetrical aliphatic diketone. Computational docking of a dialkyl ketone to variants of hCAII containing the zinc hydride provides insights into the origins of the reactivity of various substrates and the high enantioselectivity of the transformations and show how a confined environment can control the enantioselectivity of an abiological intermediate.
Collapse
Affiliation(s)
- Reichi Chen
- Department of Chemistry, University of California, Berkeley California, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Colby S Kayrouz
- Department of Chemistry, University of California, Berkeley California, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Eli McAmis
- Department of Chemistry, University of California, Berkeley California, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley California, 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley California, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Honda Malca S, Duss N, Meierhofer J, Patsch D, Niklaus M, Reiter S, Hanlon SP, Wetzl D, Kuhn B, Iding H, Buller R. Effective engineering of a ketoreductase for the biocatalytic synthesis of an ipatasertib precursor. Commun Chem 2024; 7:46. [PMID: 38418529 PMCID: PMC10902378 DOI: 10.1038/s42004-024-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/15/2024] [Indexed: 03/01/2024] Open
Abstract
Semi-rational enzyme engineering is a powerful method to develop industrial biocatalysts. Profiting from advances in molecular biology and bioinformatics, semi-rational approaches can effectively accelerate enzyme engineering campaigns. Here, we present the optimization of a ketoreductase from Sporidiobolus salmonicolor for the chemo-enzymatic synthesis of ipatasertib, a potent protein kinase B inhibitor. Harnessing the power of mutational scanning and structure-guided rational design, we created a 10-amino acid substituted variant exhibiting a 64-fold higher apparent kcat and improved robustness under process conditions compared to the wild-type enzyme. In addition, the benefit of algorithm-aided enzyme engineering was studied to derive correlations in protein sequence-function data, and it was found that the applied Gaussian processes allowed us to reduce enzyme library size. The final scalable and high performing biocatalytic process yielded the alcohol intermediate with ≥ 98% conversion and a diastereomeric excess of 99.7% (R,R-trans) from 100 g L-1 ketone after 30 h. Modelling and kinetic studies shed light on the mechanistic factors governing the improved reaction outcome, with mutations T134V, A238K, M242W and Q245S exerting the most beneficial effect on reduction activity towards the target ketone.
Collapse
Affiliation(s)
- Sumire Honda Malca
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Nadine Duss
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Jasmin Meierhofer
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
- Analytical Research and Development, MSD Werthenstein BioPharma GmbH, Industrie Nord 1, 6105 Schachen, Switzerland
| | - David Patsch
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Michael Niklaus
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Stefanie Reiter
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
- Manufacturing Science and Technology, Fisher Clinical Services GmbH, Biotech Innovation Park, 2543 Lengnau, Switzerland
| | - Steven Paul Hanlon
- Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Dennis Wetzl
- Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
- Nonclinical Drug Development, Boehringer Ingelheim International GmbH, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Bernd Kuhn
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Hans Iding
- Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Rebecca Buller
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| |
Collapse
|
3
|
Ketoreductase-assisted synthesis of chiral selective tert-butyl{5-[(4-cyanophenyl)(hydroxy)methyl]-2-fluorophenyl}carbamate: process minutiae, optimization and characterization. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Transaminase-mediated chiral selective synthesis of (1R)-(3-methylphenyl)ethan-1-amine from 1-(3-methylphenyl)ethan-1-one: process minutiae, optimization, characterization and 'What If studies'. Bioprocess Biosyst Eng 2023; 46:207-225. [PMID: 36463332 DOI: 10.1007/s00449-022-02824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022]
Abstract
Transaminases capable of carrying out chiral selective transamination of 1-(3-methylphenyl)ethan-1-one to (1R)-(3-methylphenyl)ethan-1-amine were screened, and ATA-025 was the best enzyme, while dimethylsulfoxide (10% V/V) was the best co-solvent for said bioconversion. The variables such as enzyme loading, substrate loading, temperature, and pH for development of process displaying maximum conversion with good product formation and higher yield were optimized. The ambient processing conditions were 10% enzyme loading/50 g/L substrate loading/45 °C/pH 8.0, and 5% enzyme loading/36.78 g/L substrate loading/42.66 °C/pH 8.2 displaying maximum conversion 99.01 ± 2.47% and 96.115 ± 1.97%, and 76.93 ± 1.05% and 73.12 ± 1.04% yield with one factor at a time approach and numerical optimization with Box Behnken Design, respectively. In the final optimized reaction, ATA-025 showed the highest 99.22 ± 2.61% conversion, 49.55 g/L product formation, with an actual product recovery of 38.16 g corresponding to a product yield 77.03 ± 1.01% with respect to the product formed after reaction. The purity of recovered product (1R)-(3-methylphenyl)ethan-1-amine formed was ≥ 99% (RP-HPLC), and chiral purity ≥ 98.5% (Chiral-GC), and it was also confirmed and characterized with instrumental methods using boiling point, LC-MS, ATR-FTIR, and 1H NMR. The findings of 'What If' studies performed by investigating timely progress of reaction on gram scale by drastically changing the process parameters revealed a substantial modification in process variables to achieve desired results. (1R)-(3-methylphenyl)ethan-1-amine synthesized by green, facile and novel enzymatic approach with an optimized process could be used for synthesis of different active pharma entities.
Collapse
|
5
|
Büchler J, Hegarty E, Schroer K, Snajdrova R, Turner NJ, Loiseleur O, Buller R, Le Chapelain C. A Collaborative Journey towards the Late‐Stage Functionalization of Added‐Value Chemicals Using Engineered Halogenases. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Johannes Büchler
- Zurich University of Applied Sciences School of Life Sciences and Facility Management Institute of Chemistry and Biotechnology, CH- 8820 Wädenswil Switzerland
- Department of Chemistry The University of Manchester Manchester Institute of Biotechnology, UK- Manchester M1 7DN United Kingdom
| | - Eimear Hegarty
- Zurich University of Applied Sciences School of Life Sciences and Facility Management Institute of Chemistry and Biotechnology, CH- 8820 Wädenswil Switzerland
| | - Kirsten Schroer
- Novartis Institutes for BioMedical Research Global Discovery Chemistry, CH- 4056 Basel Switzerland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research Global Discovery Chemistry, CH- 4056 Basel Switzerland
| | - Nicholas J. Turner
- Department of Chemistry The University of Manchester Manchester Institute of Biotechnology, UK- Manchester M1 7DN United Kingdom
| | - Olivier Loiseleur
- Syngenta Crop Protection AG Schaffhauserstr. 101 CH-4332 Stein Switzerland
| | - Rebecca Buller
- Zurich University of Applied Sciences School of Life Sciences and Facility Management Institute of Chemistry and Biotechnology, CH- 8820 Wädenswil Switzerland
| | | |
Collapse
|
6
|
Jiang Y, Mondal D, Lewis JC. Expanding the Reactivity of Flavin-Dependent Halogenases toward Olefins via Enantioselective Intramolecular Haloetherification and Chemoenzymatic Oxidative Rearrangements. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuhua Jiang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C. Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Papadopoulou A, Peters C, Borchert S, Steiner K, Buller R. Development of an Ene Reductase-Based Biocatalytic Process for the Production of Flavor Compounds. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Athena Papadopoulou
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Christin Peters
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Sonja Borchert
- Firmenich SA, Rue de la Bergère 7, 1242 Satigny, Switzerland
| | - Kerstin Steiner
- Firmenich SA, Rue de la Bergère 7, 1242 Satigny, Switzerland
| | - Rebecca Buller
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
8
|
Zhang J, Zhou J, Xu G, Ni Y. Stereodivergent evolution of KpADH for the asymmetric reduction of diaryl ketones with para-substituents. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Ospina F, Schülke KH, Hammer SC. Biocatalytic Alkylation Chemistry: Building Molecular Complexity with High Selectivity. Chempluschem 2021; 87:e202100454. [PMID: 34821073 DOI: 10.1002/cplu.202100454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Indexed: 12/28/2022]
Abstract
Biocatalysis has traditionally been viewed as a field that primarily enables access to chiral centers. This includes the synthesis of chiral alcohols, amines and carbonyl compounds, often through functional group interconversion via hydrolytic or oxidation-reduction reactions. This limitation is partly being overcome by the design and evolution of new enzymes. Here, we provide an overview of a recently thriving research field that we summarize as biocatalytic alkylation chemistry. In the past 3-4 years, numerous new enzymes have been developed that catalyze sp3 C-C/N/O/S bond formations. These enzymes utilize different mechanisms to generate molecular complexity by coupling simple fragments with high activity and selectivity. In many cases, the engineered enzymes perform reactions that are difficult or impossible to achieve with current small-molecule catalysts such as organocatalysts and transition-metal complexes. This review further highlights that the design of new enzyme function is particularly successful when off-the-shelf synthetic reagents are utilized to access non-natural reactive intermediates. This underscores how biocatalysis is gradually moving to a field that build molecules through selective bond forming reactions.
Collapse
Affiliation(s)
- Felipe Ospina
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Kai H Schülke
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Stephan C Hammer
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|