1
|
Liu X, Peng F, Li G, Diao K. Dynamic Metal Nanoclusters: A Review on Accurate Crystal Structures. Molecules 2023; 28:5306. [PMID: 37513180 PMCID: PMC10383162 DOI: 10.3390/molecules28145306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Dynamic metal nanoclusters have garnered widespread attention due to their unique properties and potential applications in various fields. Researchers have been dedicated to developing new synthesis methods and strategies to control the morphologies, compositions, and structures of metal nanoclusters. Through optimized synthesis methods, it is possible to prepare clusters with precise sizes and shapes, providing a solid foundation for subsequent research. Accurate determination of their crystal structures is crucial for understanding their behavior and designing custom functional materials. Dynamic metal nanoclusters also demonstrate potential applications in catalysis and optoelectronics. By manipulating the sizes, compositions, and surface structures of the clusters, efficient catalysts and optoelectronic materials can be designed and synthesized for various chemical reactions and energy conversion processes. This review summarizes the research progress in the synthesis methods, crystal structure characterization, and potential applications of dynamic metal nanoclusters. Various nanoclusters composed of different metal elements are introduced, and their potential applications in catalysis, optics, electronics, and energy storage are discussed. Additionally, the important role of dynamic metal nanoclusters in materials science and nanotechnology is explored, along with an overview of the future directions and challenges in this field.
Collapse
Affiliation(s)
- Xiang Liu
- Hunan Drug Inspection Center, Hunan Institute for Drug Control, Changsha 410013, China;
| | - Fan Peng
- Public Course Teaching Department, Changsha Health Vocational College, Changsha 410013, China;
| | - Gao Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kai Diao
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
2
|
Lan L, Daly H, Sung R, Tuna F, Skillen N, Robertson PKJ, Hardacre C, Fan X. Mechanistic Study of Glucose Photoreforming over TiO 2-Based Catalysts for H 2 Production. ACS Catal 2023; 13:8574-8587. [PMID: 37441233 PMCID: PMC10334428 DOI: 10.1021/acscatal.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/11/2023] [Indexed: 07/15/2023]
Abstract
Glucose is a key intermediate in cellulose photoreforming for H2 production. This work presents a mechanistic investigation of glucose photoreforming over TiO2 and Pt/m-TiO2 catalysts. Analysis of the intermediates formed in the process confirmed the α-scission mechanism of glucose oxidation forming arabinose (Cn-1 sugar) and formic acid in the initial oxidation step. The selectivity to sugar products and formic acid differed over Pt/TiO2 and TiO2, with Pt/TiO2 showing the lower selectivity to formic acid due to enhanced adsorption/conversion of formic acid over Pt/TiO2. In situ ATR-IR spectroscopy of glucose photoreforming showed the presence of molecular formic acid and formate on the surface of both catalysts at low glucose conversions, suggesting that formic acid oxidation could dominate surface reactions in glucose photoreforming. Further in situ ATR-IR of formic acid photoreforming showed Pt-TiO2 interfacial sites to be key for formic acid oxidation as TiO2 was unable to convert adsorbed formic acid/formate. Isotopic studies of the photoreforming of formic acid in D2O (with different concentrations) showed that the source of the protons (to form H2 at Pt sites) was determined by the relative surface coverage of adsorbed water and formic acid.
Collapse
Affiliation(s)
- Lan Lan
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Helen Daly
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Rehana Sung
- Manchester
Institute of Biotechnology, The University
of Manchester, Manchester M13 9PL, United
Kingdom
| | - Floriana Tuna
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, United Kingdom
- Photon
Science Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Nathan Skillen
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, United
Kingdom
| | - Peter K. J. Robertson
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, United
Kingdom
| | - Christopher Hardacre
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Xiaolei Fan
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
3
|
Zhang Y, Zhang J, Li Z, Qin Z, Sharma S, Li G. Atomically precise copper dopants in metal clusters boost up stability, fluorescence, and photocatalytic activity. Commun Chem 2023; 6:24. [PMID: 36755056 PMCID: PMC9908894 DOI: 10.1038/s42004-023-00817-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
The structurally precise alloy nanoclusters have been emerged as a burgeoning nanomaterial for their unique physical/chemical features. We here report a rod-like nanocluster [Au12Cu13(PPh3)10I7](SbF6)2 (Au12Cu13), which was generated through a transformation of a [Au9(PPh3)8]3+ intermediate in the presence of CuI, unveiled by time-dependent UV-vis spectroscopy, electrospray ionization mass spectrometry as well as single crystal X-ray diffraction. Au12Cu13 is comprised of two pentagonal bipyramids Au6Cu units and a pentagonal prism Cu11 unit, where the copper and gold species are presented in +1 and 0 chemical states. The Cu-dopants significantly improved the stability and fluorescence (quantum yield: ~34%, 34-folds of homo-Au25(PPh3)10Br7). The high stability of Au12Cu13 is attributed to the high binding energy of iodine ligands, Au-Cu synergistic effects and its 16-electon system as an 8-electron superatom dimer. Finally, the robust Au12Cu13 exhibited high catalytic activity (~92% conversion and ~84% methyl formate-selectivity) and good durability in methanol photo-oxidation.
Collapse
Affiliation(s)
- Yifei Zhang
- grid.263484.f0000 0004 1759 8467Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering Shenyang Normal University, Shenyang, 110034 China ,grid.9227.e0000000119573309State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Jingjing Zhang
- grid.9227.e0000000119573309State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhiwen Li
- grid.9227.e0000000119573309State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Zhaoxian Qin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sachil Sharma
- grid.9227.e0000000119573309State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China ,grid.513382.e0000 0004 7667 4992School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Andhra Pradesh (VIT-AP university), Amaravati, Andhra Pradesh 522237 India
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Broomhead WT, Tian W, Herrera JE, Chin YHC. Kinetic Coupling of Redox and Acid Chemistry in Methanol Partial Oxidation on Vanadium Oxide Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- William Thomas Broomhead
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Wei Tian
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - José Efrain Herrera
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Ya-Huei Cathy Chin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
5
|
Zhang X, Shi Q, Liu X, Li J, Xu H, Ding H, Li G. Facile Assembly of InVO 4/TiO 2 Heterojunction for Enhanced Photo-Oxidation of Benzyl Alcohol. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1544. [PMID: 35564253 PMCID: PMC9101042 DOI: 10.3390/nano12091544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
Abstract
In this work, an InVO4/TiO2 heterojunction composite catalyst was successfully synthesized through a facile hydrothermal method. The structural and optical characteristics of InVO4/TiO2 heterojunction composites are investigated using a variety of techniques, including powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and spectroscopy techniques. The addition of InVO4 to TiO2 considerably enhanced the photocatalytic performance in selective photo-oxidation of benzyl alcohol (BA). The 10 wt% InVO4/TiO2 composite photocatalyst provided a decent 100% BA conversion with over 99% selectivity for benzaldehyde, and exhibited a maximum conversion rate of 3.03 mmol g-1 h-1, which is substantially higher than bare InVO4 and TiO2. The excellent catalytic activity of the InVO4/TiO2 photocatalyst is associated with the successful assembly of heterostructures, which promotes the charge separation and transfer between InVO4 and TiO2.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (Q.S.); (J.L.); (H.D.)
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Quanquan Shi
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (Q.S.); (J.L.); (H.D.)
| | - Xin Liu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (Q.S.); (J.L.); (H.D.)
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jingmei Li
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (Q.S.); (J.L.); (H.D.)
| | - Hui Xu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (Q.S.); (J.L.); (H.D.)
| | - Hongjing Ding
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (Q.S.); (J.L.); (H.D.)
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
6
|
Understanding of Photocatalytic Partial Oxidation of Methanol to Methyl Formate on Surface Doped La(Ce)-TiO2: Experiment and DFT Calculation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Waheed A, Cao C, Zhang Y, Zheng K, Li G. Insight into Au/ZnO catalyzed aerobic benzyl alcohol oxidation by modulation–excitation attenuated total reflection IR spectroscopy. NEW J CHEM 2022. [DOI: 10.1039/d2nj00176d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The chemisorbed or dissociated oxygen species is associated with the catalytic activity in alcohol oxidation catalyzed by Au/ZnO catalysts.
Collapse
Affiliation(s)
- Ammara Waheed
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Changhai Cao
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC Dalian Research Institute of Petroleum and Petro-chemicals, Dalian 116045, China
| | - Yifei Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Kai Zheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|