1
|
Zhang H, Han G, Liu Y, Zhao L, Zhang W, Tahir Khalil M, Wei H, Wang C, Liu T, Guo X, Wu X, Jiang J, Li B. CoP/Co heterojunction on porous g-C 3N 4 nanosheets as a highly efficient catalyst for hydrogen generation. J Colloid Interface Sci 2024; 658:22-31. [PMID: 38091795 DOI: 10.1016/j.jcis.2023.12.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Designing non-precious catalysts to synergistically achieve a facilitated exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a hetero-structured catalyst CoP-Co supported on porous g-C3N4 nanosheets (CoP-Co/CN-I) was prepared by pyrolysis and P-inducing strategy. The optimal catalyst achieves a turnover frequency (TOF) of 26 min-1 at room temperature and the apparent activation energy (Ea) is 35.5 kJ·mol-1. The catalytic activity is ranked top among the non-precious metal phosphides or the other supports. Meanwhile, the catalytic activity has no significant decrease even after 5 cycles. The CoP/Co interfaces provide richly exposed active sites, optimize hydrogen/water absorption free energy via electronic coupling, and thus improve the catalytic activity. The experimental results reveal that the CoP/Co heterojunction improves the catalytic activity due to the construction of dual-active sites. This research facilitates the innovative construction of non-noble metal catalysts to meet industrial demand for heterogeneous catalysis.
Collapse
Affiliation(s)
- Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Guosheng Han
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yanyan Liu
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China; College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, PR China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210042, PR China.
| | - Lingli Zhao
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Wenbo Zhang
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, PR China
| | - Muhammad Tahir Khalil
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Huijuan Wei
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Chengming Wang
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Tao Liu
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Xianji Guo
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210042, PR China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
2
|
Jiang H, Chen X, Cui D, Lu K, Kong X, Zhang X. Systematic Investigation on Supported Gold Catalysts Prepared by Fluorine-Free Basic Etching Ti 3AlC 2 in Selective Oxidation of Aromatic Alcohols to Aldehydes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3139. [PMID: 37109976 PMCID: PMC10143880 DOI: 10.3390/ma16083139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Conventional methods to prepare supported metal catalysts are chemical reduction and wet impregnation. This study developed and systematically investigated a novel reduction method based on simultaneous Ti3AlC2 fluorine-free etching and metal deposition to prepare gold catalysts. The new series of Aupre/Ti3AlxC2Ty catalysts were characterized by XRD, XPS, TEM, and SEM and were tested in the selective oxidation of representative aromatic alcohols to aldehydes. The catalytic results demonstrate the effectiveness of the preparation method and better catalytic performances of Aupre/Ti3AlxC2Ty, compared with those of catalysts prepared by traditional methods. Moreover, this work presents a comprehensive study on the influence of calcination in air, H2, and Ar, and we found that the catalyst of Aupre/Ti3AlxC2Ty-Air600 obtained by calcination in air at 600 °C performed the best, owing to the synergistic effect between tiny surface TiO2 species and Au NPs. The tests of reusability and hot filtration confirmed the catalyst stability.
Collapse
|
3
|
Mehrabi-Kalajahi S, Orooji Y, Arefi-Oskoui S, Varfolomeev MA, Khasanova NM, Yoon Y, Khataee A. Preparasion of layered V4AlC3 MAX phase for highly selective and efficient solvent-free aerobic oxidation of toluene to benzaldehyde. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|