1
|
Hassan NS, Jalil AA, Bahari MB, Izzuddin NM, Fauzi NAFM, Jusoh NWC, Kamaroddin MFA, Saravanan R, Tehubijuluw H. A critical review of MXene-based composites in the adsorptive and photocatalysis of hexavalent chromium removal from industrial wastewater. ENVIRONMENTAL RESEARCH 2024; 259:119584. [PMID: 38992758 DOI: 10.1016/j.envres.2024.119584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
The growing concern of water pollution is a critical issue stemming from industrialization and urbanization. One of the specific concerns within this broader problem is the toxicity associated with chromium (Cr), especially in its Cr (VI) form. Transition metal carbides/nitrides (MXenes) are attractive materials for the treatment of water due to their unique properties such as layered structure, high surface area, conductivity, flexibility, scalable manufacture, and surface functions. Adsorption and photocatalysis reactions are the two promising methods for the removal of Cr (VI) by using MXenes. Still, most of the previous reviews were limited to the single application area. Hence, this review covers recent developments in MXene-based composites, highlighting their dual role as both adsorbents and photocatalysts in the removal of Cr (VI). MXene-based composites are found to be effective in both adsorption and photodegradation of Cr (VI). Most MXene-based composites have demonstrated exceptional removal efficiency for Cr (VI), achieving impressive adsorption capacities ranging from 100 to 1500 mg g-1 and degradation percentages between 80% and 100% in a relatively short period. The active functional groups present on the surface of MXene have a viable impact on the adsorption and photodegradation performance. The mechanism of Cr (VI) removal is explained, with MXenes playing a key role in electrostatic attraction for adsorption and as co-catalysts in photocatalysis. However, MXene-based composites have limitations such as instability, competition with co-existing ions, and regeneration challenges. Further research is needed to address these limitations. Additionally, MXene-based composites hold promise for addressing water contamination, heavy metal removal, hydrogen production, energy storage, gas sensing, and biomedical applications.
Collapse
Affiliation(s)
- N S Hassan
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia; Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - A A Jalil
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia; Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 60210, India.
| | - M B Bahari
- Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - N M Izzuddin
- Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - N A F M Fauzi
- Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - N W C Jusoh
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - M F A Kamaroddin
- Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - R Saravanan
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile
| | - H Tehubijuluw
- Department of Chemistry, Pattimura University, Kampus Poka, 97134, Jl. Ir. M. Putuhena, Ambon, Indonesia
| |
Collapse
|
2
|
Lakshmi Anvitha N, A G, S V, S B, I G K I. Facile Fabrication of Titanium Carbide (Ti3C2)-Bismuth Vanadate (BiVO4) Nano-Coupled Oxides for Anti-cancer Activity. Cureus 2024; 16:e61492. [PMID: 38952587 PMCID: PMC11216123 DOI: 10.7759/cureus.61492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/01/2024] [Indexed: 07/03/2024] Open
Abstract
Background MXene is a newly discovered substance consisting of 2D transition metal carbides or nitrides, produced through the disintegration and etching of aluminum layers. It possesses numerous properties, including a high surface area, conductivity, strength, stiffness, negative zeta potential, and excellent volumetric capacitance. MXene is utilized in detecting anti-cancer medicine, while bismuth vanadate (BiVO4) is synthesized to form an optimized material for anti-cancer activity applications. BiVO4 exhibits visible light absorption, strong chemical stability, and non-toxic properties. However, when loaded onto target stem cells, it can cause skin and respiratory irritation. Aim This study aimed to evaluate the facile fabrication of titanium carbide (Ti3C2)-BiVO4 nanomaterials coupled with oxides for anti-cancer activity. Moreover, it aimed to create Ti3C2-BiVO4 nanomaterials in combination with oxides using X-ray diffraction (XRD) and scanning electron microscopy (SEM) to assess their potential as efficient and targeted anti-cancer agents. Methods and materials To prepare the 2D Ti3C2 MXene, 2.5 g of titanium aluminum carbide (Ti3AlC2) powder was dissolved in 60 mL of a 40% hydrofluoric acid (HF) solution in a polytetrafluoroethylene(PTFE) container. The etching process was made more efficient and completed in 24 hours by using a magnetic stirring system to keep the mixture stirred and heated continuously. The centrifugation was performed at 4000 rpm for five minutes. Subsequently, deionized water was used to wash the solution many times until its pH reached around 7. The appropriate Ti3C2 powder was made by vacuum drying the acquired sediment at 80°C for 24 hours. Monoclinic BiVO4 samples were synthesized via a hydrothermal method. Typically, 10 mmol of Bi(NO3)3.5H2O was dissolved in 100 mL of a 2 mol/L HNO3 solution and stirred uniformly. Subsequently, 10 mmol of ammonium metavanadate (NH4VO3) was added to the mixed solution. After being stirred for one hour, the mixture was transferred into a 100 mL sealed Teflon-lined stainless steel autoclave at 180°C for 16 hours. After cooling to room temperature, the sediment was washed three times with deionized water, ethanol, and acetone, respectively. Finally, the suspension was dried at 80°C, followed by calcination at 450°C for three hours to obtain BiVO4. Ti3C2-BiVO4 heterostructures were prepared by surface modification Ti3C2 using BiVO4 suspensions by a simple, cost-effective approach. Results Ti3C2 nanosheets were observed with BiVO4 particles, and the high crystalline nature of the compound was confirmed after XRD analysis and energy-dispersive spectroscopy (EDS) analysis. The compound was found to be pure without any impurities and exhibited anti-cancer activity. Conclusion The XRD, field emission scanning electron microscopy(FESEM), and EDS investigations provide an in-depth analysis of the structural, morphological, and compositional characteristics of Ti3C2-BiVO4 sheets. The XRD analysis proves the successful combination of different materials and the presence of crystalline phases. The FESEM imaging technique exposes the shape and arrangement of particles in sheets, while the EDS analysis verifies the elemental composition and uniform distribution. These investigations show that Ti3C2-BiVO4 composites have been successfully synthesized, indicating their potential for use in anti-cancer applications.
Collapse
Affiliation(s)
- Nagubandi Lakshmi Anvitha
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Geetha A
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Vasugi S
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Balachandran S
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Ilangovar I G K
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
3
|
Xin J, Kong S, Zhang X, Yang Y, Wang X. Simultaneous removal of methylene blue and Cr(VI) in a dual-chamber photocatalytic microbial fuel cell with WO 3/MoS 2/FTO photocathode. Heliyon 2024; 10:e29204. [PMID: 38644858 PMCID: PMC11033111 DOI: 10.1016/j.heliyon.2024.e29204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Carbon felt was used as the anode and WO3/MoS2/FTO (fluorine-doped tin oxide) was used as the photocathode in a photocatalytic microbial fuel cell (PMFC). The photoelectric performance of the WO3/MoS2/FTO photocathode and the removal efficiency of methylene blue (MB) and Cr(VI) mixed pollutants were systematically investigated in the cathode chamber. The results showed that after 12 h of light irradiation in the PMFC with WO3/MoS2/FTO as the photocathode, the removal rates of MB and Cr(VI) were 84.56 and 68.11 %, respectively, which were much higher than those using WO3/FTO as a photocathode (55.57 % and 45.26 %, respectively). The corresponding maximum output power was 33.14 mW/m2, which was 1.85 times that of the WO3/FTO photocathode PMFC. These results can be attributed to the fact that WO3 is an n-type semiconductor and MoS2 is a p-type semiconductor. Analysis of trapping experiments showed that the composite of WO3 and MoS2 formed a Z-scheme heterojunction, which improved the separation efficiency of the photoelectric carriers and enhanced the pollutant removal efficiency of the photocathode. PMFCs are a new and environment-friendly technology for removing pollutants thereby providing an experimental basis for future engineering applications.
Collapse
Affiliation(s)
- Jiye Xin
- School of Ecology and Environment, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia, 010070, China
| | - Shishi Kong
- School of Ecology and Environment, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia, 010070, China
| | - Xiaoliang Zhang
- School of Ecology and Environment, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia, 010070, China
| | - Yujuan Yang
- School of Ecology and Environment, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia, 010070, China
| | - Xuan Wang
- School of Ecology and Environment, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia, 010070, China
- Key Laboratory of Environmental Pollution Control and Waste Recycling, Inner Mongolia Autonomous Region, 24 Zhaojun Road, Hohhot, Inner Mongolia, 010070, China
| |
Collapse
|
4
|
Gu P, Liu S, Cheng X, Zhang S, Wu C, Wen T, Wang X. Recent strategies, progress, and prospects of two-dimensional metal carbides (MXenes) materials in wastewater purification: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169533. [PMID: 38154645 DOI: 10.1016/j.scitotenv.2023.169533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development of industrialization, water pollution directly leads to the serious shortage of fresh water. As reported by the World Water Council, nearly 3.8 billion people will face water scarcity by 2030. Therefore, developing advanced nanomaterials to realize wastewater purification is a major challenge. Two-dimensional (2D) transition metal carbides (MXenes), as the emerging 2D layered nanomaterials, have been investigated for the applications of water purification treatment since first reported in 2011. Over 40 different MXenes have been developed for environmental remediation, and dozens more structures and properties are theoretically predicted. Here, we review the advances from the aspects of synthesis strategies for MXenes, purification mechanism, and their applications in wastewater treatment processes. The major points are 1) the synthesis and modification approaches for MXenes such as multi-layered stacked MXenes and delaminated MXenes 2) a discussion of current water remediation over MXene-based materials, 3) a brief introduction for removal behaviors and deep interaction mechanisms, 4) optimization strategies and key points for boosting the remediation performance of MXenes.
Collapse
Affiliation(s)
- Pengcheng Gu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Shengsheng Liu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Xiangmei Cheng
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Sai Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Chuanying Wu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Tao Wen
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
5
|
Ahmad Shah SN, Zulfiqar S, Ruipérez F, Rafique M, Iqbal M, Forrester MJ, Sarwar Late MI, Cochran EW. An integrated experimental and theoretical approach to probe Cr(vi) uptake using decorated halloysite nanotubes for efficient water treatment. RSC Adv 2024; 14:2947-2960. [PMID: 38239454 PMCID: PMC10794904 DOI: 10.1039/d3ra07675j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Halloysite nanotubes (HNTs) were surface functionalized using four distinct chemical moieties (amidoxime, hydrazone, ethylenediamine (EDA), and diethylenetriamine (DETA)), producing modified HNTs (H1-H4) capable of binding with Cr(vi) ions. Advanced techniques like FTIR, XRD, SEM, and EDX provided evidence of the successful functionalization of these HNTs. Notably, the functionalization occurred on the surface of HNTs, rather than within the interlayer or lumen. These decorated HNTs were effective in capturing Cr(vi) ions at optimized sorption parameters, with adsorption rates ranging between 58-94%, as confirmed by atomic absorption spectroscopy (AAS). The mechanism of adsorption was further scrutinized through the Freundlich and Langmuir isotherms. Langmuir isotherms revealed the nearest fit to the data suggesting the monolayer adsorption of Cr(vi) ions onto the nanotubes, indicating a favorable adsorption process. It was hypothesized that Cr(vi) ions are primarily attracted to the amine groups on the modified nanotubes. Quantum chemical calculations further revealed that HNTs functionalized with hydrazone structures (H2) demonstrated a higher affinity (interaction energy -26.33 kcal mol-1) for the Cr(vi) ions. This can be explained by the formation of stronger hydrogen bonds with the NH moieties of the hydrazone moiety, than those established by the OH of oxime (H1) and longer amine chains (H3 and H4), respectively. Overall, the findings suggest that these decorated HNTs could serve as an effective and cost-efficient solution for treating water pollution.
Collapse
Affiliation(s)
- Syed Nadeem Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology H-12 Islamabad 44000 Pakistan
| | - Sonia Zulfiqar
- Department of Chemistry, Faculty of Science, University of Ostrava 30. Dubna 22 Ostrava 701 03 Czech Republic
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road, Ames Iowa 50011 USA
| | - Fernando Ruipérez
- POLYMAT, Physical Chemistry Department, Faculty of Pharmacy, University of the Basque Country UPV/EHU 01006 Vitoria-Gasteiz Spain
| | - Muhammad Rafique
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology H-12 Islamabad 44000 Pakistan
| | - Michael J Forrester
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road, Ames Iowa 50011 USA
| | | | - Eric W Cochran
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road, Ames Iowa 50011 USA
| |
Collapse
|
6
|
Jatoi AS, Mubarak NM, Hashmi Z, Solangi NH, Karri RR, Hua TY, Mazari SA, Koduru JR, Alfantazi A. New insights into MXene applications for sustainable environmental remediation. CHEMOSPHERE 2023; 313:137497. [PMID: 36493892 DOI: 10.1016/j.chemosphere.2022.137497] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Multiple ecological contaminants in gaseous, liquid, and solid forms are vented into ecosystems due to the huge growth of industrialization, which is today at the forefront of worldwide attention. High-efficiency removal of these environmental pollutants is a must because of the potential harm to public health and biodiversity. The alarming concern has led to the synthesis of improved nanomaterials for removing pollutants. A path to innovative methods for identifying and preventing several obnoxious, hazardous contaminants from entering the environment is grabbing attention. Various applications in diverse industries are seen as a potential directions for researchers. MXene is a new, excellent, and advanced material that has received greater importance related to the environmental application. Due to its unique physicochemical and mechanical properties, high specific surface area, physiological compatibility, strong electrodynamics, and raised specific surface area wettability, its applications are growing. This review paper examines the most recent methods and trends for environmental pollutant removal using advanced 2D Mxene materials. In addition, the history and the development of MXene synthesis were elaborated. Furthermore, an extreme summary of various environmental pollutants removal has been discussed, and the future challenges along with their future perspectives have been illustrated.
Collapse
Affiliation(s)
- Abdul Sattar Jatoi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan.
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Zubair Hashmi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Tan Yie Hua
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Akram Alfantazi
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
7
|
Yu H, Dai M, Zhang J, Chen W, Jin Q, Wang S, He Z. Interface Engineering in 2D/2D Heterogeneous Photocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205767. [PMID: 36478659 DOI: 10.1002/smll.202205767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Assembling different 2D nanomaterials into heterostructures with strong interfacial interactions presents a promising approach for novel artificial photocatalytic materials. Chemically implementing the 2D nanomaterials' construction/stacking modes to regulate different interfaces can extend their functionalities and achieve good performance. Herein, based on different fundamental principles and photochemical processes, multiple construction modes (e.g., face-to-face, edge-to-face, interface-to-face, edge-to-edge) are overviewed systematically with emphasis on the relationships between their interfacial characteristics (e.g., point, linear, planar), synthetic strategies (e.g., in situ growth, ex situ assembly), and enhanced applications to achieve precise regulation. Meanwhile, recent efforts for enhancing photocatalytic performances of 2D/2D heterostructures are summarized from the critical factors of enhancing visible light absorption, accelerating charge transfer/separation, and introducing novel active sites. Notably, the crucial roles of surface defects, cocatalysts, and surface modification for photocatalytic performance optimization of 2D/2D heterostructures are also discussed based on the synergistic effect of optimization engineering and heterogeneous interfaces. Finally, perspectives and challenges are proposed to emphasize future opportunities for expanding 2D/2D heterostructures for photocatalysis.
Collapse
Affiliation(s)
- Huijun Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Meng Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Wenhan Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Qiu Jin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zuoli He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
8
|
Raheem I, Mubarak NM, Karri RR, Solangi NH, Jatoi AS, Mazari SA, Khalid M, Tan YH, Koduru JR, Malafaia G. Rapid growth of MXene-based membranes for sustainable environmental pollution remediation. CHEMOSPHERE 2023; 311:137056. [PMID: 36332734 DOI: 10.1016/j.chemosphere.2022.137056] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Water consumption has grown in recent years due to rising urbanization and industry. As a result, global water stocks are steadily depleting. As a result, it is critical to seek strategies for removing harmful elements from wastewater once it has been cleaned. In recent years, many studies have been conducted to develop new materials and innovative pathways for water purification and environmental remediation. Due to low energy consumption, low operating cost, and integrated facilities, membrane separation has gained significant attention as a potential technique for water treatment. In these directions, MXene which is the advanced 2D material has been explored and many applications were reported. However, research on MXene-based membranes is still in its early stages and reported applications are scatter. This review provides a broad overview of MXenes and their perspectives, including their synthesis, surface chemistry, interlayer tuning, membrane construction, and uses for water purification. Application of MXene based membrane for extracting pollutants such as heavy metals, organic contaminants, and radionuclides from the aqueous water bodies were briefly discussed. Furthermore, the performance of MXene-based separation membranes is compared to that of other nano-based membranes, and outcomes are very promising. In order to shed more light on the advancement of MXene-based membranes and their operational separation applications, significant advances in the fabrication of MXene-based membranes is also encapsulated. Finally, future prospects of MXene-based materials for diverse applications were discussed.
Collapse
Affiliation(s)
- Ijlal Raheem
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei, Darussalam.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei, Darussalam.
| | - Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Abdul Sattar Jatoi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Yie Hua Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil. Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
9
|
Wu R, Yi J, Bao R, Liu P. The excellent photocatalytic capability of TiO2@C/O-doped g-C3N4 heterojunction photocatalyst. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Yu S, Tang H, Zhang D, Wang S, Qiu M, Song G, Fu D, Hu B, Wang X. MXenes as emerging nanomaterials in water purification and environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152280. [PMID: 34896484 DOI: 10.1016/j.scitotenv.2021.152280] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 05/21/2023]
Abstract
Environmental pollution has accelerated and intensified because of the acceleration of industrialization, therefore fabricating excellent materials to remove hazardous pollutants has become inevitable. MXenes as emerging transition metal nitrides, carbides or carbonitrides with high conductivity, hydrophilicity, excellent structural stability, and versatile surface chemistry, become ideal candidates for water purification and environmental remediation. Particularly, MXenes reveal excellent sorption capability and efficient reduction performance for various contaminants of wastewater. In this regard, a comprehensive understanding of the removal behaviors of MXene-based nanomaterials is necessary to explain how they remove various pollutants in water. The eliminate process of MXene-based nanomaterials is collectively influenced by the physicochemical properties of the materials themselves and the chemical properties of different contaminants. Therefore, in this review paper, the synthesis strategies and properties of MXene-based nanomaterials are briefly introduced. Then, the chemical properties, removal behaviors and interaction mechanisms of heavy metal ions, radionuclides, and organic pollutants by MXene-based nanomaterials are highlighted. The overview also emphasizes associated toxicity, secondary contamination, the challenges, and prospects of the MXene-based nanomaterials in the applications of water treatment. This review can supply valuable ideas for fabricating versatile MXene nanomaterials in eliminating water pollution.
Collapse
Affiliation(s)
- Shujun Yu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Hao Tang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Di Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Shuqin Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Dong Fu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
11
|
Guo Y, Han W, Zhao K, Hao S, Shi S, Ding Y. Promoting effects of Y doping and FeOOH loading for efficient photoelectrochemical activity on BiVO 4 electrodes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An FeOOH/Y-BiVO4 photoelectrode with high PEC performance was obtained using a combination of Y-doping and modification with FeOOH. The FeOOH/Y-BiVO4 photoelectrode exhibited efficient PEC activity for solar water oxidation and wastewater treatment.
Collapse
Affiliation(s)
- Yuwei Guo
- Department of Chemistry, Baotou Teachers' College, Baotou, 014030, P. R. China
- Institute of Rare Earth Applications, Department of Chemistry, Baotou Teachers’ College, Baotou 014030, P. R. China
| | - Wei Han
- Department of Chemistry, Baotou Teachers' College, Baotou, 014030, P. R. China
| | - Kaichen Zhao
- Department of Chemistry, Baotou Teachers' College, Baotou, 014030, P. R. China
| | - Shaojun Hao
- Department of Chemistry, Baotou Teachers' College, Baotou, 014030, P. R. China
| | - Shenggang Shi
- Department of Chemistry, Baotou Teachers' College, Baotou, 014030, P. R. China
| | - Yongping Ding
- Department of Chemistry, Baotou Teachers' College, Baotou, 014030, P. R. China
- Institute of Rare Earth Applications, Department of Chemistry, Baotou Teachers’ College, Baotou 014030, P. R. China
| |
Collapse
|