1
|
Yamamoto M, Aihara T, Wachi K, Hara M, Kamata K. La 1-xSr xFeO 3-δ Perovskite Oxide Nanoparticles for Low-Temperature Aerobic Oxidation of Isobutane to tert-Butyl Alcohol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62244-62253. [PMID: 39484694 PMCID: PMC11565478 DOI: 10.1021/acsami.4c15585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
The development of reusable solid catalysts based on naturally abundant metal elements for the liquid-phase selective oxidation of light alkanes under mild conditions to obtain desired oxygenated products, such as alcohols and carbonyl compounds, remains a challenge. In this study, various perovskite oxide nanoparticles were synthesized by a sol-gel method using aspartic acid, and the effects of A- and B-site metal cations on the liquid-phase oxidation of isobutane to tert-butyl alcohol with molecular oxygen as the sole oxidant were investigated. Iron-based perovskite oxides containing Fe4+ such as BaFeO3-δ, SrFeO3-δ, and La1-xSrxFeO3-δ exhibited catalytic performance superior to those of other Fe3+- and Fe2+-based iron oxides and Mn-, Ni-, and Co-based perovskite oxides. The partial substitution of Sr for La in LaFeO3 significantly enhanced the catalytic performance and durability. In particular, the La0.8Sr0.2FeO3-δ catalyst could be recovered by simple filtration and reused several times without an obvious loss of its high catalytic performance, whereas the recovered BaFeO3-δ and SrFeO3-δ catalysts were almost inactive. La0.8Sr0.2FeO3-δ promoted the selective oxidation of isobutane even under mild conditions (60 °C), and the catalytic activity was comparable to that of homogeneous systems, including halogenated metalloporphyrin complexes. On the basis of mechanistic studies, including the effect of Sr substitution in La1-xSrxFeO3-δ on surface redox reactions, the present oxidation proceeds via a radical-mediated oxidation mechanism, and the surface-mixed Fe3+/Fe4+ valence states of La1-xSrxFeO3-δ nanoparticles likely play an important role in promoting C-H activation of isobutane as well as decomposition of tert-butyl hydroperoxide.
Collapse
Affiliation(s)
- Masanao Yamamoto
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Takeshi Aihara
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keiju Wachi
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Michikazu Hara
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keigo Kamata
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| |
Collapse
|
2
|
Valderrama-Zapata R, García-Sánchez JT, Vargas-Montañez OJ, Rincón-Ortiz SA, Mora-Vergara ID, Pérez-Martínez D, Morales-Valencia EM, Baldovino-Medrano VG. Interplay Between Ni and Brønsted and Lewis Acid Sites in the Hydrodesulfurization of Dibenzothiophene. Chemphyschem 2024; 25:e202300987. [PMID: 38653714 DOI: 10.1002/cphc.202300987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Ni-MoS2/γ-Al2O3 catalysts are commonly used in hydrotreating to enhance fossil fuel quality. The extensive research on these catalysts reveals a gap in understanding the role of Ni, often underestimated as an inactive sulfide phase or just a MoS2 promoter. In this work, we focused on analyzing whether well-dispersed supported nickel nanoparticles can be active in the hydrodesulfurization of dibenzothiophene. We dispersed Ni by Strong Electrostatic Adsorption (SEA) method across four supports with different types of acidity: silica (~ neutral acidity), γ-Al2O3 (Lewis acidity), H+-Y zeolite, and microporous-mesoporous H+-Y zeolite (both with Brønsted-Lewis acidity). Our findings reveal that Ni is indeed active in dibenzothiophene hydrodesulfurization, even with alumina and silica as supports, although their catalytic activity declines abruptly in the first hours. Contrastingly, the acid nature of zeolites imparts sustained stability and performance, attributed to robust metal-support interactions. The efficacy of the SEA method and the added mesoporosity in zeolites further amplify catalytic efficiency. Overall, we demonstrate that Ni nanoparticles may perform as a hydrogenating metal in the same manner as noble metals such as Pt and Pd perform in hydrodesulfurization. We discuss some of the probable reasons for such performance and remark on the role of Ni in hydrotreatment.
Collapse
Affiliation(s)
- Rodrigo Valderrama-Zapata
- Centro de Investigaciones en Catálisis (CICAT), Universidad Industrial de Santander, Parque Tecnológico Guatiguará, km 2 vía Guatiguará, El Refugio, Piedecuesta, Santander, 681011, Colombia
| | - Julieth T García-Sánchez
- Centro de Investigaciones en Catálisis (CICAT), Universidad Industrial de Santander, Parque Tecnológico Guatiguará, km 2 vía Guatiguará, El Refugio, Piedecuesta, Santander, 681011, Colombia
- Laboratorio Central de Ciencia de Superficies (SurfLab), Universidad Industrial de Santander, Parque Tecnológico Guatiguará, km 2 vía Guatiguará, El Refugio, Piedecuesta, Santander, 681011, Colombia
| | - Omar J Vargas-Montañez
- Centro de Investigaciones en Catálisis (CICAT), Universidad Industrial de Santander, Parque Tecnológico Guatiguará, km 2 vía Guatiguará, El Refugio, Piedecuesta, Santander, 681011, Colombia
| | - Sergio A Rincón-Ortiz
- Centro de Investigaciones en Catálisis (CICAT), Universidad Industrial de Santander, Parque Tecnológico Guatiguará, km 2 vía Guatiguará, El Refugio, Piedecuesta, Santander, 681011, Colombia
- Laboratorio Central de Ciencia de Superficies (SurfLab), Universidad Industrial de Santander, Parque Tecnológico Guatiguará, km 2 vía Guatiguará, El Refugio, Piedecuesta, Santander, 681011, Colombia
| | - Iván D Mora-Vergara
- Centro de Investigaciones en Catálisis (CICAT), Universidad Industrial de Santander, Parque Tecnológico Guatiguará, km 2 vía Guatiguará, El Refugio, Piedecuesta, Santander, 681011, Colombia
- Grupo de Investigación en Reingeniería, Innovación y Productividad (GREIP), Instituto Universitario de la Paz, Centro de Investigaciones Santa Lucía, km 14 vía, Barrancabermeja, Santander, 687038, Colombia
| | - David Pérez-Martínez
- Centro de Innovación y Tecnología (ICP), Ecopetrol S.A., km 7 vía, Piedecuesta, Santander), A.A., 4185, Colombia
| | - Edgar M Morales-Valencia
- Centro de Investigaciones en Catálisis (CICAT), Universidad Industrial de Santander, Parque Tecnológico Guatiguará, km 2 vía Guatiguará, El Refugio, Piedecuesta, Santander, 681011, Colombia
- Grupo de Investigación en Reingeniería, Innovación y Productividad (GREIP), Instituto Universitario de la Paz, Centro de Investigaciones Santa Lucía, km 14 vía, Barrancabermeja, Santander, 687038, Colombia
| | - Víctor G Baldovino-Medrano
- Centro de Investigaciones en Catálisis (CICAT), Universidad Industrial de Santander, Parque Tecnológico Guatiguará, km 2 vía Guatiguará, El Refugio, Piedecuesta, Santander, 681011, Colombia
- Laboratorio Central de Ciencia de Superficies (SurfLab), Universidad Industrial de Santander, Parque Tecnológico Guatiguará, km 2 vía Guatiguará, El Refugio, Piedecuesta, Santander, 681011, Colombia
| |
Collapse
|