1
|
Yuan B, Yang D, Qu G, Turner NJ, Sun Z. Biocatalytic reductive aminations with NAD(P)H-dependent enzymes: enzyme discovery, engineering and synthetic applications. Chem Soc Rev 2024; 53:227-262. [PMID: 38059509 DOI: 10.1039/d3cs00391d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Chiral amines are pivotal building blocks for the pharmaceutical industry. Asymmetric reductive amination is one of the most efficient and atom economic methodologies for the synthesis of optically active amines. Among the various strategies available, NAD(P)H-dependent amine dehydrogenases (AmDHs) and imine reductases (IREDs) are robust enzymes that are available from various sources and capable of utilizing a broad range of substrates with high activities and stereoselectivities. AmDHs and IREDs operate via similar mechanisms, both involving a carbinolamine intermediate followed by hydride transfer from the co-factor. In addition, both groups catalyze the formation of primary and secondary amines utilizing both organic and inorganic amine donors. In this review, we discuss advances in developing AmDHs and IREDs as biocatalysts and focus on evolutionary history, substrate scope and applications of the enzymes to provide an outlook on emerging industrial biotechnologies of chiral amine production.
Collapse
Affiliation(s)
- Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dameng Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Nicholas J Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
2
|
Wu T, Wang Y, Zhang N, Yin D, Xu Y, Nie Y, Mu X. Reshaping Substrate-Binding Pocket of Leucine Dehydrogenase for Bidirectionally Accessing Structurally Diverse Substrates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tao Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian223800, China
| | - Yinmiao Wang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Ningxin Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Dejing Yin
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Xiaoqing Mu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian223800, China
| |
Collapse
|
3
|
Ducrot L, Bennett M, André-Leroux G, Elisée E, Marynberg S, Fossey-Jouenne A, Zaparucha A, Grogan G, Vergne-Vaxelaire C. Expanding the Substrate Scope of Native Amine Dehydrogenases through In Silico Structural Exploration and Targeted Protein Engineering. ChemCatChem 2022. [DOI: 10.1002/cctc.202200880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Laurine Ducrot
- Commissariat a l'energie atomique et aux energies alternatives Institut de biologie Francois Jacob Genoscope 2 rue Gaston Cremieux 91000 EVRY FRANCE
| | | | - Gwenaëlle André-Leroux
- Paris-Saclay University: Universite Paris-Saclay MaIAGE: Mathematiques et Informatique Appliquees du Genome a l'Environnement FRANCE
| | - Eddy Elisée
- Commissariat a l'energie atomique et aux energies alternatives Institut de biologie Francois Jacob Genoscope 2 rue Gaston Cremieux 91000 EVRY FRANCE
| | - Sacha Marynberg
- Commissariat a l'energie atomique et aux energies alternatives Institut de biologie Francois Jacob Genoscope FRANCE
| | - Aurélie Fossey-Jouenne
- Commissariat a l'energie atomique et aux energies alternatives Institut de biologie Francois Jacob Genoscope FRANCE
| | - Anne Zaparucha
- Commissariat a l'energie atomique et aux energies alternatives Institut de biologie Francois Jacob Genoscope FRANCE
| | | | - Carine Vergne-Vaxelaire
- Commissariat a l'energie atomique et aux energies alternatives Institut de biologie Francois Jacob Genoscope 2 rue Gaston Cremieux 91000 EVRY FRANCE
| |
Collapse
|
4
|
Substrate-Specific Engineering of Amino Acid Dehydrogenase Superfamily for Synthesis of a Variety of Chiral Amines and Amino Acids. Catalysts 2022. [DOI: 10.3390/catal12040380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Amino acid dehydrogenases (AADHs) are a group of enzymes that catalyze the reversible reductive amination of keto acids with ammonia to produce chiral amino acids using either nicotinamide adenine dinucleotide (NAD+) or nicotinamide adenine dinucleotide phosphate (NADP+) as cofactors. Among them, glutamate dehydrogenase, valine dehydrogenase, leucine dehydrogenase, phenylalanine dehydrogenase, and tryptophan dehydrogenase have been classified as a superfamily of amino acid dehydrogenases (s-AADHs) by previous researchers because of their conserved structures and catalytic mechanisms. Owing to their excellent stereoselectivity, high atom economy, and low environmental impact of the reaction pathway, these enzymes have been extensively engineered to break strict substrate specificities for the synthesis of high value-added chiral compounds (chiral amino acids, chiral amines, and chiral amino alcohols). Substrate specificity engineering of s-AADHs mainly focuses on recognition engineering of the substrate side chain R group and substrate backbone carboxyl group. This review summarizes the reported studies on substrate specificity engineering of s-AADHs and reports that this superfamily of enzymes shares substrate specificity engineering hotspots (the inside of the pocket, substrate backbone carboxyl anchor sites, substrate entrance tunnel, and hinge region), which sheds light on the substrate-specific tailoring of these enzymes.
Collapse
|
5
|
Li J, Mu X, Wu T, Xu Y. High coenzyme affinity chimeric amine dehydrogenase based on domain engineering. BIORESOUR BIOPROCESS 2022; 9:33. [PMID: 38647888 PMCID: PMC10992376 DOI: 10.1186/s40643-022-00528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
NADH-dependent phenylalanine amine dehydrogenase (F-AmDH) engineered from phenylalanine dehydrogenase (PheDH) catalyzes the synthesis of aromatic chiral amines from prochiral ketone substrates. However, its low coenzyme affinity and catalytic efficiency limit its industrial application. Here, we developed a chimeric amine dehydrogenase, cFLF-AmDH, based on the relative independence of the structure at the domain level, combined with a substrate-binding domain from F-AmDH and a high-affinity cofactor-binding domain from leucine amine dehydrogenase (L-AmDH). The kinetic parameters indicated that cFLF-AmDH showed a twofold improvement in affinity for NADH and a 4.4-fold increase in catalytic efficiency (kcat/Km) compared with the parent F-AmDH. Meanwhile, cFLF-AmDH also showed higher thermal stability, with the half-life increased by 60% at 55 °C and a broader substrate spectrum, than the parent F-AmDH. Molecular dynamics simulations suggested that the constructed cFLF-AmDH had a more stable structure than the parent F-AmDH, thereby improving the affinity of the coenzyme. The reaction rate increased by 150% in the reductive amination reaction catalyzed by cFLF-AmDH. When the NAD+ concentration was 0.05 mM, the conversion rate was increased by 150%. These results suggest that the chimeric protein by domain shuffling from different domain donors not only increased the cofactor affinity and catalytic efficiency, but also changed the specificity and thermal stability. Our study highlights that domain engineering is another effective method for creating biodiversity with different catalytic properties.
Collapse
Affiliation(s)
- Jialin Li
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian, 223800, China
| | - Xiaoqing Mu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Suqian Jiangnan University Institute of Industrial Technology, Suqian, 223800, China.
| | - Tao Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|