1
|
Jamali SH, Wolff L, Becker TM, de Groen M, Ramdin M, Hartkamp R, Bardow A, Vlugt TJH, Moultos OA. OCTP: A Tool for On-the-Fly Calculation of Transport Properties of Fluids with the Order-n Algorithm in LAMMPS. J Chem Inf Model 2019; 59:1290-1294. [DOI: 10.1021/acs.jcim.8b00939] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seyed Hossein Jamali
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Ludger Wolff
- Institute of Technical Thermodynamics, RWTH Aachen University, 52056 Aachen, Germany
| | - Tim M. Becker
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Mariëtte de Groen
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Mahinder Ramdin
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Remco Hartkamp
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - André Bardow
- Institute of Technical Thermodynamics, RWTH Aachen University, 52056 Aachen, Germany
| | - Thijs J. H. Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
2
|
Jamali SH, Wolff L, Becker TM, Bardow A, Vlugt TJH, Moultos OA. Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics. J Chem Theory Comput 2018; 14:2667-2677. [PMID: 29664633 PMCID: PMC5943679 DOI: 10.1021/acs.jctc.8b00170] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations were performed for the prediction of the finite-size effects of Maxwell-Stefan diffusion coefficients of molecular mixtures and a wide variety of binary Lennard-Jones systems. A strong dependency of computed diffusivities on the system size was observed. Computed diffusivities were found to increase with the number of molecules. We propose a correction for the extrapolation of Maxwell-Stefan diffusion coefficients to the thermodynamic limit, based on the study by Yeh and Hummer ( J. Phys. Chem. B , 2004 , 108 , 15873 - 15879 ). The proposed correction is a function of the viscosity of the system, the size of the simulation box, and the thermodynamic factor, which is a measure for the nonideality of the mixture. Verification is carried out for more than 200 distinct binary Lennard-Jones systems, as well as 9 binary systems of methanol, water, ethanol, acetone, methylamine, and carbon tetrachloride. Significant deviations between finite-size Maxwell-Stefan diffusivities and the corresponding diffusivities at the thermodynamic limit were found for mixtures close to demixing. In these cases, the finite-size correction can be even larger than the simulated (finite-size) Maxwell-Stefan diffusivity. Our results show that considering these finite-size effects is crucial and that the suggested correction allows for reliable computations.
Collapse
Affiliation(s)
- Seyed Hossein Jamali
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| | - Ludger Wolff
- Institute of Technical Thermodynamics , RWTH Aachen University , 52056 Aachen , Germany
| | - Tim M Becker
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| | - André Bardow
- Institute of Technical Thermodynamics , RWTH Aachen University , 52056 Aachen , Germany
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| |
Collapse
|
3
|
Janzen T, Zhang S, Mialdun A, Guevara-Carrion G, Vrabec J, He M, Shevtsova V. Mutual diffusion governed by kinetics and thermodynamics in the partially miscible mixture methanol + cyclohexane. Phys Chem Chem Phys 2018; 19:31856-31873. [PMID: 29171844 DOI: 10.1039/c7cp06515a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To gain an understanding of the transport and thermodynamic behavior of the highly non-ideal mixture methanol + cyclohexane, three complementary approaches, i.e. experiment, molecular simulation and predictive equations, are employed. The temperature and composition dependence of different diffusion coefficients is studied around the miscibility gap at ambient pressure. On the one hand Fick diffusion coefficients are measured experimentally by interferometric probing and on the other hand Maxwell-Stefan diffusion coefficients and intradiffusion coefficients are sampled by equilibrium molecular dynamics simulation at five temperatures below the upper critical temperature of ∼319 K. The spinodal curve is determined from extrapolation of the experimental Fick diffusion coefficient data and compared to predictions from excess Gibbs energy models. It is found that these models are not capable to correctly describe the activity coefficients over the whole composition range of the studied mixture. Thus, different parameter sets for a modified Wilson model are used for calculations of the thermodynamic factor, which is needed to transform Maxwell-Stefan into Fick diffusion coefficients and vice versa. Further, predictive equations for the Maxwell-Stefan diffusion coefficient, which are based on intradiffusion coefficients, are compared to simulation results. Using different approaches provides a clearer understanding of the relations between kinetic and thermodynamic properties contributing to the diffusion behavior of partially miscible mixtures.
Collapse
Affiliation(s)
- Tatjana Janzen
- Thermodynamics and Energy Technology, University of Paderborn, 33098 Paderborn, Germany.
| | | | | | | | | | | | | |
Collapse
|
4
|
Wang J, Zhong H, Liang C, Chen X, Chen L. Molecular dynamics simulation of diffusion and structure of n -alkane/ n -alkanol mixtures at infinite dilution. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.08.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Krishna R, van Baten JM. Hydrogen bonding effects in adsorption of water-alcohol mixtures in zeolites and the consequences for the characteristics of the Maxwell-Stefan diffusivities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:10854-10867. [PMID: 20411951 DOI: 10.1021/la100737c] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This work highlights a variety of peculiar characteristics of adsorption and diffusion of polar molecules such as water, methanol and ethanol in zeolites. These peculiarities are investigated with the aid of configurational-bias Monte Carlo (CBMC) simulations of adsorption isotherms, and molecular dynamics (MD) simulations of diffusivities in FAU, MFI, DDR, and LTA zeolites. Because of strong hydrogen bonding, significant clustering of the guest molecules occurs in all investigated structures. Because of molecular clustering, the inverse thermodynamic factor 1/Gamma(i) identical with (d[ln c(i)])/(d[ln f(i)]) exceeds unity for a range molar concentrations c(i) within the micropores. The degree of clustering is lowered as the temperature is increased. For the concentration ranges for which 1/Gamma(i) > 1, the Fick diffusivity, D(i), for unary diffusion is often lower than both the Maxwell-Stefan, D(i), and the self-diffusivity, D(i,self). For water-alcohol mixtures, the hydrogen bonding between water and alcohol molecules is much more predominant than for water-water, and alcohol-alcohol molecule pairs. Consequently, the adsorption of water-alcohol mixtures shows significant deviations from the predictions of the ideal adsorbed solution theory (IAST). The water-alcohol bonding also leaves its imprint on the mixture diffusion characteristics. The Maxwell-Stefan diffusivity, D(i), of either component in water-alcohol mixtures is lower than the corresponding values of the pure components; this behavior is distinctly different from that for mixtures of nonpolar guest molecules. The binary exchange coefficient D(12) for water-alcohol mixtures is also significantly lower than either self-exchange coefficients D(11) and D(22) of the constituent species. This implies that correlation effects are significantly stronger in water-alcohol mixtures than for the constituent species. Correlation effects are found to be significant for water-alcohol mixture diffusion in DDR and LTA zeolites, even though such effects are negligible for the pure constituents. The major conclusion to emerge from this investigation is that, unlike mixtures of nonpolar molecules, it is not possible to estimate water-alcohol mixture adsorption and diffusion characteristics on the basis of pure component data.
Collapse
Affiliation(s)
- Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
6
|
Pfeuffer B, Kunz U, Hoffmann U, Turek T. Multicomponent Mass Transfer Model for Supercritical Extraction: Application to Isopropyl Alcohol Production. Chem Eng Technol 2009. [DOI: 10.1002/ceat.200900204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Dubbeldam D, Snurr RQ. Recent developments in the molecular modeling of diffusion in nanoporous materials. MOLECULAR SIMULATION 2007. [DOI: 10.1080/08927020601156418] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Krishna R, van Baten JM. Validating the Darken Relation for Diffusivities in Fluid Mixtures of Varying Densities by Use of MD Simulations. Chem Eng Technol 2006. [DOI: 10.1002/ceat.200500417] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|