1
|
Han J, Xie N, Ju J, Zhang Y, Wang Y, Kang W. Developments of electrospinning technology in membrane bioreactor: A review. CHEMOSPHERE 2024; 364:143091. [PMID: 39151583 DOI: 10.1016/j.chemosphere.2024.143091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The necessity for effective wastewater treatment and purification has grown as a result of the increasing pollution issues brought on by industrial and municipal wastewater. Membrane bioreactor (MBR) technology stands out when compared to other treatment methods because of its high efficiency, environmental friendliness, small footprint, and ease of maintenance. However, the development and application of membrane bioreactors has been severely constrained by the higher cost and shorter service life of these devices brought on by membrane biofouling issues resulting from contaminants and bacteria in the water. The nanoscale size of the electrospinning products provides unique microstructure, and the technology facilitates the production of structurally different membranes, or the modification and functionalization of membranes, which makes it possible to solve the membrane fouling problem. Therefore, many current studies have attempted to use electrospinning in MBRs to address membrane fouling and ultimately improve treatment efficacy. Meanwhile, in addition to solving the problem of membrane fouling, the fabrication technology of electrospinning also shows great advantages in constructing thin porous fiber membrane materials with controllable surface wettability and layered structure, which is helpful for the performance enhancement of MBR and expanding innovation. This paper systematically reviews the application and research progress of electrospinning in MBRs. Firstly, the current status of the application of electrospinning technology in various MBRs is introduced, and the relevant measures to solve the membrane fouling based on electrospinning technology are analyzed. Subsequently, some new types of MBRs and new application areas developed with the help of electrospinning technology are introduced. Finally, the limitations and challenges of merging the two technologies are presented, and pertinent recommendations are provided for future research on the use of electrospinning technology in membrane bioreactors.
Collapse
Affiliation(s)
- Jiacheng Han
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Nan Xie
- ChinaTianjin Research Institute of Construction Machinery, No.91 Huashi Road, Beichen Technology Park, Tianjin, 300409, PR China
| | - Jingge Ju
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| | - Yan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Yongcheng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| |
Collapse
|
2
|
Asif MB, Maqbool T, Zhang Z. Electrochemical membrane bioreactors: State-of-the-art and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140233. [PMID: 32570070 DOI: 10.1016/j.scitotenv.2020.140233] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Integration of an electrochemical process with membrane bioreactor (MBR) has attracted considerable attention in the last decade for simultaneous improvement in pollutant removal and hydraulic performance of MBR. Electrochemical MBR (eMBR) with sacrificial anodes has been observed to achieve enhanced phosphorus (up to 40%) and micropollutant removal (5-60%). This is because direct anodic oxidation, indirect oxidation by reactive oxygen species and electrocoagulation can supplement the biological process. The application of an electric field can substantially reduce membrane fouling by 10% to 95% in the eMBR as compared to the conventional MBR. Sacrificial electrodes (e.g., iron or aluminium) have been reported to be more suitable for fouling mitigation than non-sacrificial electrodes (e.g., titanium). However, during prolonged operation, metal ions released from sacrificial electrodes can adversely affect microbial activity and could accumulate in activated sludge. Depending on the current density and electrode material (sacrificial or non- sacrificial), anodic oxidation, electrocoagulation, electrophoresis and/or electroosmosis mechanisms are responsible for suppressing membrane fouling propensity. This paper critically reviews the current status of the electrochemical MBR technology and presents a concise summary of eMBR configurations and electrode materials. Comparative removal of bulk organics, nutrients and micropollutants in the eMBR and conventional MBR is discussed, and performance governing factors are elucidated. Impacts of operating conditions such as current density on mixed liquor properties (e.g., floc size and zeta potential) and microbial activity are elucidated. The extent of membrane fouling mitigation along with associated mechanisms as well as energy consumption is explained and critically analysed. Future research directions are suggested to fast track the scalability of eMBR, which include but are not limited to electrode lifetime, development of self-cleaning conductive membranes, optimisation of operating parameters, removal of emerging micropollutants, accumulation of toxic metals in activated sludge, and degradation by-products and ecotoxicity.
Collapse
Affiliation(s)
- Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Zhang X, Guo Y, Wang T, Wu Z, Wang Z. Antibiofouling performance and mechanisms of a modified polyvinylidene fluoride membrane in an MBR for wastewater treatment: Role of silver@silica nanopollens. WATER RESEARCH 2020; 176:115749. [PMID: 32247996 DOI: 10.1016/j.watres.2020.115749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 05/09/2023]
Abstract
Biofouling remains to be one of major obstacles in membrane bioreactors (MBRs), calling for the development of antibiofouling membranes. Silver nanoparticles (AgNPs), being a kind of broad spectrum bactericidal agent, have been widely used for modifying membrane; however, uncontrollable release of AgNPs and thus a short lifetime of modified membranes are thorny issues for the AgNPs-modified membranes. In this study, silica nanopollens were used as AgNPs nanocarriers for membrane modification (ASNP-M), which could improve silver delivery efficacy, avoid agglomeration and control Ag+ release towards bacteria. At a silver loading of 107.7 ± 10.9 μg Ag/cm2, ASNP-M effectively inhibited growth of Escherichia coli and Staphylococcus aureus, with an Ag+ release rate of 0.5 μg/(cm2 d). Long-term MBR tests showed that ASNP-M exhibited a significantly reduced transmembrane pressure increase rate of 0.88 ± 0.34 kPa/d which was much lower than that of two control membranes, i.e., pristine membrane (M0) (2.32 ± 0.86 kPa/d) and Ag@silica nanospheres (without spikes) modified membrane (ASNS-M) (2.25 ± 1.28 kPa/d). No significant adverse influences on the pollutant removal were also observed in the reactor. Foulants analysis revealed that biofilm of ASNP-M was thinner and comprised of mainly dead cells, and only organic matter with strong adhesion properties was allowed to attach onto the membrane surface. Bacterial community analysis suggested that the incorporation of Ag@silica nanopollens inhibited colonization of bacteria which are capable of causing membrane biofouling (e.g., Proteobacteria and Actinobacteria). These findings highlight the potential of the antibiofouling membrane to be used in MBRs for wastewater treatment and reclamation.
Collapse
Affiliation(s)
- Xingran Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yu Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tianlin Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
4
|
Wang J, Zhao S, Kakade A, Kulshreshtha S, Liu P, Li X. A Review on Microbial Electrocatalysis Systems Coupled with Membrane Bioreactor to Improve Wastewater Treatment. Microorganisms 2019; 7:microorganisms7100372. [PMID: 31547014 PMCID: PMC6843282 DOI: 10.3390/microorganisms7100372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
Microbial electrocatalysis is an electro reaction that uses microorganisms as a biocatalyst, mainly including microbial electrolytic cells (MEC) and microbial fuel cells (MFC), which has been used for wastewater treatment. However, the low processing efficiency is the main drawback for its practical application and the additional energy input of MEC system results in high costs. Recently, MFC/MEC coupled with other treatment processes, especially membrane bioreactors (MBR), has been used for high efficiency and low-cost wastewater treatment. In these systems, the wastewater treatment efficiency can be improved after two units are operated and the membrane fouling of MBR can also be alleviated by the electric energy that was generated in the MFC. In addition, the power output of MFC can also reduce the energy consumption of microbial electrocatalysis systems. This review summarizes the recent studies about microbial electrocatalysis systems coupled with MBR, describing the combination types and microorganism distribution, the advantages and limitations of the systems, and also addresses several suggestions for the future development and practical applications.
Collapse
Affiliation(s)
- Jicun Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou 730000, China.
| | - Shuai Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou 730000, China.
| | - Apurva Kakade
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India.
| | - Saurabh Kulshreshtha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India.
| | - Pu Liu
- Department of Developmental Biology, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, China.
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou 730000, China.
| |
Collapse
|
5
|
Liu L, Xu Y, Wang K, Li K, Xu L, Wang J, Wang J. Fabrication of a novel conductive ultrafiltration membrane and its application for electrochemical removal of hexavalent chromium. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Dong Z, Shang W, Dong W, Zhao L, Li M, Wang R, Sun F. Suppression of membrane fouling in the ceramic membrane bioreactor (CMBR) by minute electric field. BIORESOURCE TECHNOLOGY 2018; 270:113-119. [PMID: 30216920 DOI: 10.1016/j.biortech.2018.08.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Three ceramic MBRs (CMBR) installed with varied electrodes, i.e. Cu, Ti and Fe, were operated in parallel under the minute electric field to evaluate their suppression effect on membrane fouling, by comparison with control CMBR. Fe-CMBR released Fe2+ continuously to induce a higher organic removal efficiency and a smooth fouling rate. There was significant electric-flocculation effect in the Fe-CMBR, reflected by the increased sludge particle size and zeta potential, and to improve sludge filterability. Application of minute electric field could also affect the CMBR supernatant organic content and components, which was another reason for fouling mitigation. The formed membrane fouling layer was more easily to be detached by simple backwashing in all electric CMBRs, since that there were significant electric repulsive force to prevent foulants deposition.
Collapse
Affiliation(s)
- Zijun Dong
- School of Civil and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Wentao Shang
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Wenyi Dong
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Lingyan Zhao
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Mu Li
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Rui Wang
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Feiyun Sun
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.
| |
Collapse
|
7
|
Katuri KP, Kalathil S, Ragab A, Bian B, Alqahtani MF, Pant D, Saikaly PE. Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707072. [PMID: 29707854 DOI: 10.1002/adma.201707072] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Indexed: 06/08/2023]
Abstract
Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.
Collapse
Affiliation(s)
- Krishna P Katuri
- Biological and Environmental Sciences and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Shafeer Kalathil
- Biological and Environmental Sciences and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Ala'a Ragab
- Biological and Environmental Sciences and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Bin Bian
- Biological and Environmental Sciences and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Manal F Alqahtani
- Biological and Environmental Sciences and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Pascal E Saikaly
- Biological and Environmental Sciences and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Liu J, Wang X, Wang Z, Lu Y, Li X, Ren Y. Integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane for enhancing bio-electricity and water recovery from low-strength wastewater. WATER RESEARCH 2017; 110:74-82. [PMID: 27998785 DOI: 10.1016/j.watres.2016.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/04/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
Microbial fuel cells (MFCs) and forward osmosis (FO) are two emerging technologies with great potential for energy-efficient wastewater treatment. In this study, anaerobic acidification and FO membrane were simultaneously integrated into an air-cathode MFC (AAFO-MFC) for enhancing bio-electricity and water recovery from low-strength wastewater. During a long-term operation of approximately 40 days, the AAFO-MFC system achieved a continuous and relatively stable power generation, and the maximum power density reached 4.38 W/m3. The higher bio-electricity production in the AAFO-MFC system was mainly due to the accumulation of ethanol resulted from anaerobic acidification process and the rejection of FO membrane. In addition, a proper salinity environment in the system controlled by the addition of MF membrane enhanced the electricity production. Furthermore, the AAFO-MFC system produced a high quality effluent, with the removal rates of organic matters and total phosphorus of more than 97%. However, the nitrogen removal was limited for the lower rejection of FO membrane. The combined biofouling and inorganic fouling were responsible for the lower water flux of FO membrane, and the Desulfuromonas sp. utilized the ethanol for bio-electricity production was observed in the anode. These results substantially improve the prospects for simultaneous wastewater treatment and energy recovery, and further studies are needed to optimize the system integration and operating parameters.
Collapse
Affiliation(s)
- Jinmeng Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yuqin Lu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xiufen Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Yueping Ren
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
9
|
Nakhate PH, Joshi NT, Marathe KV. A critical review of bioelectrochemical membrane reactor (BECMR) as cutting-edge sustainable wastewater treatment. REV CHEM ENG 2017. [DOI: 10.1515/revce-2016-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
AbstractReclamation of wastewater along with minimum energy utilization has been the paramount concern today. Tremendous industrialization and corresponding demographic resulted in elevated water and energy demand; however, scarcity of sufficient water and energy resource triggers rigorous research for sustainable water treatment technology. Recent technologies like activated sludge, filtration, adsorption, coagulation, and oxidation have been considered as promising sustainable technologies, but high cost, low efficiency, and efficacy are the major concerns so far. Wastewater is food for billions of bacteria, where some exceptional bacterial species have the ability to transport electrons that are produced during metabolism to outside the cell membrane. Indeed, wastewater can itself be considered as a prominent candidate to resolve the problem of sustainability. Bioelectrochemical membrane reactor is a promising technology, which is an integration of microbial fuel cell (MFC) to membrane bioreactor (MBR). It promises the benefit of harvesting electricity while biologically treating any type of wastewater to the highest extent while passing wastewater through anaerobic, aerobic, and integrated membrane compartments in successive manner. In this review, we provide critical rethinking to take this idea of integration of MFC-MBR and apply them to produce a fully functional prototype of bioelectrochemical membrane reactor that could be used commercially.
Collapse
|
10
|
Ma J, Wang Z, Zhang J, Waite TD, Wu Z. Cost-effective Chlorella biomass production from dilute wastewater using a novel photosynthetic microbial fuel cell (PMFC). WATER RESEARCH 2017; 108:356-364. [PMID: 27836177 DOI: 10.1016/j.watres.2016.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
While microalgae have been suggested as a promising substitute to conventional fossil fuels, their cost effective cultivation and harvesting constitutes a major challenge. In the work described here, a novel photosynthetic microbial fuel cell (PMFC) in which a stainless steel mesh with biofilm formed on it serves as both the cathode and filtration material has been developed. Results of this study reveal that, in addition to inducing oxygen reduction reactions under illumination, the biocathode is effective in preventing the washout of algae during continuous operation, resulting in retained biomass concentrations reaching 3.5-6.5 g L-1. The maximum output current density reached ∼200 mA m-2 under irradiation, which is comparable with recent PMFC studies. Microbial diversity analyses targeting 16S and 18S rRNA genes indicated that the eukaryotic species belonging to the genus Chlorella was able to sustain its community dominance (>96%) over other competing species over the course of the studies. In the absence of catalysts such as Pt, a consortium of photosynthetic organisms including plant growth-promoting bacteria such as Azospirillum and Rhizobium were overrepresented in the biofilm, with these organisms most likely contributing to cathodic electron transfer. Energy flow analysis suggested that the PMFC system held the potential to achieve theoretical energy balance in simultaneous algae production and wastewater treatment.
Collapse
Affiliation(s)
- Jinxing Ma
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Junyao Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
11
|
Werner CM, Katuri KP, Hari AR, Chen W, Lai Z, Logan BE, Amy GL, Saikaly PE. Graphene-Coated Hollow Fiber Membrane as the Cathode in Anaerobic Electrochemical Membrane Bioreactors--Effect of Configuration and Applied Voltage on Performance and Membrane Fouling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4439-4447. [PMID: 26691927 DOI: 10.1021/acs.est.5b02833] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electrically conductive, graphene-coated, hollow-fiber porous membranes were used as cathodes in anaerobic electrochemical membrane bioreactors (AnEMBRs) operated at different applied voltages (0.7 and 0.9 V) using a new rectangular reactor configuration compared to a previous tubular design (0.7 V). The onset of biofouling was delayed and minimized in rectangular reactors operated at 0.9 V compared to those at 0.7 V due to higher rates of hydrogen production. Maximum transmembrane pressures for the rectangular reactor were only 0.10 bar (0.7 V) or 0.05 bar (0.9 V) after 56 days of operation compared to 0.46 bar (0.7 V) for the tubular reactor after 52 days. The thickness of the membrane biofouling layer was approximately 0.4 μm for rectangular reactors and 4 μm for the tubular reactor. Higher permeate quality (TSS = 0.05 mg/L) was achieved in the rectangular AnEMBR than that in the tubular AnEMBR (TSS = 17 mg/L), likely due to higher current densities that minimized the accumulation of cells in suspension. These results show that the new rectangular reactor design, which had increased rates of hydrogen production, successfully delayed the onset of cathode biofouling and improved reactor performance.
Collapse
Affiliation(s)
- Craig M Werner
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Krishna P Katuri
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ananda Rao Hari
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Wei Chen
- Advanced Membranes and Porous Materials Research Center, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Research Center, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Gary L Amy
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Pascal E Saikaly
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Yuan H, He Z. Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review. BIORESOURCE TECHNOLOGY 2015; 195:202-209. [PMID: 26026232 DOI: 10.1016/j.biortech.2015.05.058] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
Bioelectrochemical systems (BES) represent an energy-efficient approach for wastewater treatment, but the effluent still requires further treatment for direct discharge or reuse. Integrating membrane filtration in BES can achieve high-quality effluents with additional benefits. Three types of filtration membranes, dynamic membrane, ultrafiltration membrane and forward osmosis membrane that are grouped based on pore size, have been studied for integration in BES. The integration can be accomplished either in an internal or an external configuration. In an internal configuration, membranes can act as a separator between the electrodes, or be immersed in the anode/cathode chamber as a filtration component. The external configuration allows BES and membrane module to be operated independently. Given much progress and interest in the integration of membrane filtration into BES, this paper has reviewed the past studies, described various integration methods, discussed the advantages and limitations of each integration, and presented challenges for future development.
Collapse
Affiliation(s)
- Heyang Yuan
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
13
|
Huang J, Wang Z, Zhang J, Zhang X, Ma J, Wu Z. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors. Sci Rep 2015; 5:9268. [PMID: 25784160 PMCID: PMC4363883 DOI: 10.1038/srep09268] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/26/2015] [Indexed: 11/09/2022] Open
Abstract
Membrane fouling remains an obstacle to wide-spread applications of membrane bioreactors (MBRs) for wastewater treatment and reclamation. Herein, we report a simple method to prepare a composite conductive microfiltration (MF) membrane by introducing a stainless steel mesh into a polymeric MF membrane and to effectively control its fouling by applying an external electric field. Linear sweep voltammetry and electrochemical impedance spectroscopy analyses showed that this conductive membrane had very good electrochemical properties. Batch tests demonstrated its anti-fouling ability in filtration of bovine serum albumin, sodium alginate, humic acid and silicon dioxide particles as model foulants. The fouling rate in continuous-flow MBRs treating wastewater was also decreased by about 50% for this conductive membrane with 2 V/cm electric field compared to the control test during long-term operation. The enhanced electrostatic repulsive force between foulants and membrane, in-situ cleaning by H2O2 generated from oxygen reduction, and decreased production of soluble microbial products and extracellular polymeric substances contributed to fouling mitigation in this MBR. The results of this study shed light on the control strategy of membrane fouling for achieving a sustainable operation of MBRs.
Collapse
Affiliation(s)
- Jian Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P.R. China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P.R. China
| | - Junyao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P.R. China
| | - Xingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P.R. China
| | - Jinxing Ma
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P.R. China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P.R. China
| |
Collapse
|
14
|
Ma Z, Lei T, Ji X, Gao X, Gao C. Submerged Membrane Bioreactor for Vegetable Oil Wastewater Treatment. Chem Eng Technol 2014. [DOI: 10.1002/ceat.201400184] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Huang J, Wang Z, Zhu C, Ma J, Zhang X, Wu Z. Identification of microbial communities in open and closed circuit bioelectrochemical MBRs by high-throughput 454 pyrosequencing. PLoS One 2014; 9:e93842. [PMID: 24705450 PMCID: PMC3976363 DOI: 10.1371/journal.pone.0093842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 03/07/2014] [Indexed: 11/24/2022] Open
Abstract
Two bioelectrochemical membrane bioreactors (MBRs) developed by integrating microbial fuel cell and MBR technology were operated under closed-circuit and open-circuit modes, and high-throughput 454 pyrosequencing was used to investigate the effects of the power generation on the microbial community of bio-anode and bio-cathode. Microbes on the anode under open-circuit operation (AO) were enriched and highly diverse when compared to those on the anode under closed-circuit operation (AC). However, among the cathodes the closed-circuit mode (CC) had richer and more diverse microbial community compared to the cathode under open-circuit mode (CO). On the anodes AO and AC, Proteobacteria and Bacteroidetes were the dominant phyla, while Firmicutes was enriched only on AC. Deltaproteobacteria affiliated to Proteobacteria were also more abundant on AC than AO. Furthermore, the relative abundance of Desulfuromonas, which are well-known electrogenic bacteria, were much higher on AC (10.2%) when compared to AO (0.11%), indicating that closed-circuit operation was more conducive for the growth of electrogenic bacteria on the anodes. On the cathodes, Protebacteria was robust on CC while Bacteroidetes was more abundant on CO. Rhodobacter and Hydrogenophaga were also enriched on CC than CO, suggesting that these genera play a role in electron transfer from the cathode surface to the terminal electron acceptors in the bioelectrochemical MBR under closed-circuit operation.
Collapse
Affiliation(s)
- Jian Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, P. R. China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, P. R. China
- * E-mail:
| | - Chaowei Zhu
- Chinese Research Academy of Environmental Sciences, Beijing, P. R. China
| | - Jinxing Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, P. R. China
| | - Xingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, P. R. China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, P. R. China
| |
Collapse
|