1
|
Lüdicke MG, Hildebrandt J, Schindler C, Sperling RA, Maskos M. Automated Quantum Dots Purification via Solid Phase Extraction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1983. [PMID: 35745321 PMCID: PMC9230973 DOI: 10.3390/nano12121983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023]
Abstract
The separation of colloidal nanocrystals from their original synthesis medium is an essential process step towards their application, however, the costs on a preparative scale are still a constraint. A new combination of approaches for the purification of hydrophobic Quantum Dots is presented, resulting in an efficient scalable process in regard to time and solvent consumption, using common laboratory equipment and low-cost materials. The procedure is based on a combination of solvent-induced adhesion and solid phase extraction. The platform allows the transition from manual handling towards automation, yielding an overall purification performance similar to one conventional batch precipitation/centrifugation step, which was investigated by thermogravimetry and gas chromatography. The distinct miscibility gaps between surfactants used as nanoparticle capping agents, original and extraction medium are clarified by their phase diagrams, which confirmed the outcome of the flow chemistry process. Furthermore, the solubility behavior of the Quantum Dots is put into context with the Hansen solubility parameters framework to reasonably decide upon appropriate solvent types.
Collapse
Affiliation(s)
- Malín G. Lüdicke
- Fraunhofer Institute for Microengineering and Microsystems IMM, 55129 Mainz, Germany; (J.H.); (C.S.); (M.M.)
| | - Jana Hildebrandt
- Fraunhofer Institute for Microengineering and Microsystems IMM, 55129 Mainz, Germany; (J.H.); (C.S.); (M.M.)
- Federal Institute for Materials Research and Testing, 12205 Berlin, Germany
| | - Christoph Schindler
- Fraunhofer Institute for Microengineering and Microsystems IMM, 55129 Mainz, Germany; (J.H.); (C.S.); (M.M.)
- Interbran Advanced Materials GmbH, 76684 Oestringen, Germany
| | - Ralph A. Sperling
- Fraunhofer Institute for Microengineering and Microsystems IMM, 55129 Mainz, Germany; (J.H.); (C.S.); (M.M.)
| | - Michael Maskos
- Fraunhofer Institute for Microengineering and Microsystems IMM, 55129 Mainz, Germany; (J.H.); (C.S.); (M.M.)
| |
Collapse
|
2
|
Yang Y, Wang Z, Chen R, Zhu X, Liao Q, Ye D, Yang Y, Li W. Droplet Migration and Coalescence in a Microchannel Induced by the Photothermal Effect of a Focused Infrared Laser. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yijing Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Zhibin Wang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Dingding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yang Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Wei Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
3
|
Akdas T, Haderlein M, Walter J, Apeleo Zubiri B, Spiecker E, Peukert W. Continuous synthesis of CuInS2 quantum dots. RSC Adv 2017. [DOI: 10.1039/c6ra27052b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The impact of reactor type on synthesis parameters and disperse properties.
Collapse
Affiliation(s)
- T. Akdas
- Institute of Particle Technology (LFG)
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
- Cluster of Excellence – Engineering of Advanced Materials (EAM)
| | - M. Haderlein
- Institute of Particle Technology (LFG)
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
- Cluster of Excellence – Engineering of Advanced Materials (EAM)
| | - J. Walter
- Institute of Particle Technology (LFG)
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
- Cluster of Excellence – Engineering of Advanced Materials (EAM)
| | - B. Apeleo Zubiri
- Center for Nanoanalysis and Electron Microscopy (CENEM)
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
- Cluster of Excellence – Engineering of Advanced Materials (EAM)
| | - E. Spiecker
- Center for Nanoanalysis and Electron Microscopy (CENEM)
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
- Cluster of Excellence – Engineering of Advanced Materials (EAM)
| | - W. Peukert
- Institute of Particle Technology (LFG)
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
- Cluster of Excellence – Engineering of Advanced Materials (EAM)
| |
Collapse
|
4
|
Sonawane SH, Bari ML, Suryawanshi PL, Narkhede JS, Mishra S, Bhanvase BA. Effect of Process Parameters on Properties of Colloids in a Continuous-Flow Microreactor System. Chem Eng Technol 2015. [DOI: 10.1002/ceat.201500262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|