1
|
Wommer L, Soerjawinata W, Ulber R, Kampeis P. Agglomeration behaviour of magnetic microparticles during separation and recycling processes in mRNA purification. Eng Life Sci 2021; 21:558-572. [PMID: 34690629 PMCID: PMC8518558 DOI: 10.1002/elsc.202000112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Purification of mRNA with oligo(dT)-functionalized magnetic particles involves a series of magnetic separations for buffer exchange and washing. Magnetic particles interact and agglomerate with each other when a magnetic field is applied, which can result in a decreased total surface area and thus a decreased yield of mRNA. In addition, agglomeration may also be caused by mRNA loading on the magnetic particles. Therefore, it is of interest how the individual steps of magnetic separation and subsequent redispersion in the buffers used affect the particle size distribution. The lysis/binding buffer is the most important buffer for the separation of mRNA from the multicomponent suspension of cell lysate. Therefore, monodisperse magnetic particles loaded with mRNA were dispersed in the lysis/binding buffer and in the reference system deionized water, and the particle size distributions were measured. A concentration-dependent agglomeration tendency was observed in deionized water. In contrast, no significant agglomeration was detected in the lysis/binding buffer. With regard to magnetic particle recycling, the influence of different storage and drying processes on particle size distribution was investigated. Agglomeration occurred in all process alternatives. For de-agglomeration, ultrasonic treatment was examined. It represents a suitable method for reproducible restoration of the original particle size distribution.
Collapse
Affiliation(s)
- Lars Wommer
- Environmental Campus BirkenfeldInstitute for biotechnical Process DesignTrier University of Applied SciencesHoppstädten‐WeiersbachGermany
| | - Winda Soerjawinata
- Environmental Campus BirkenfeldInstitute for biotechnical Process DesignTrier University of Applied SciencesHoppstädten‐WeiersbachGermany
| | - Roland Ulber
- Institute of Bioprocess EngineeringTechnical University KaiserslauternKaiserslauternGermany
| | - Percy Kampeis
- Environmental Campus BirkenfeldInstitute for biotechnical Process DesignTrier University of Applied SciencesHoppstädten‐WeiersbachGermany
| |
Collapse
|
2
|
The Effect of pH and Viscosity on Magnetophoretic Separation of Iron Oxide Nanoparticles. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7060080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Magnetic nanoparticles (MNPs) are used for magnetophoresis-based separation processes in various biomedical and engineering applications. Essential requirements are the colloidal stability of the MNPs and the ability to be separated even in low magnetic field gradients. Bare iron oxide nanoparticles (BIONs) with a diameter of 9.2 nm are synthesized via coprecipitation, exhibiting a high saturation magnetization of 70.84 Am2 kg−1 and no remanence. In our study, zeta potential, dynamic light scattering (DLS), and sedimentation analysis show that the aggregation behavior of BIONs is influenced by pH and viscosity. Small aggregate clusters are formed with either low or high pH values or increased viscosity. Regarding magnetophoresis-based separation, a higher viscosity leads to lower magnetophoretic velocities, similar to how small aggregates do. Additionally, cooperative magnetophoresis, the joint motion of strongly interacting particles, affects the separation of the BIONs, too. Our study emphasizes the effect of pH and viscosity on the physicochemical characteristics of MNPs, resulting in different aggregation behavior. Particularly, for high viscous working media in downstream processing and medicine, respectively, the viscosity should be taken into account, as it will affect particle migration.
Collapse
|
3
|
Schwaminger SP, Fraga-García P, Eigenfeld M, Becker TM, Berensmeier S. Magnetic Separation in Bioprocessing Beyond the Analytical Scale: From Biotechnology to the Food Industry. Front Bioeng Biotechnol 2019; 7:233. [PMID: 31612129 PMCID: PMC6776625 DOI: 10.3389/fbioe.2019.00233] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/09/2019] [Indexed: 12/25/2022] Open
Abstract
Downstream processing needs more innovative ideas to advance and overcome current bioprocessing challenges. Chromatography is by far the most prevalent technique used by a conservative industrial sector. Chromatography has many advantages but also often represents the most expensive step in a pharmaceutical production process. Therefore, alternative methods as well as further processing strategies are urgently needed. One promising candidate for new developments on a large scale is magnetic separation, which enables the fast and direct capture of target molecules in fermentation broths. There has been a small revolution in this area in the last 10–20 years and a few papers dealing with the use of magnetic separation in bioprocessing examples beyond the analytical scale have been published. Since each target material is purified with a different magnetic separation approach, the comparison of processes is not trivial but would help to understand and improve magnetic separation and thus making it attractive for the technical scale. To address this issue, we report on the latest achievements in magnetic separation technology and offer an overview of the progress of the capture and separation of biomolecules derived from biotechnology and food technology. Magnetic separation has great potential for high-throughput downstream processing in applied life sciences. At the same time, two major challenges need to be overcome: (1) the development of a platform for suitable and flexible separation devices and (2) additional investigations of advantageous processing conditions, especially during recovery. Concentration and purification factors need to be improved to pave the way for the broader use of magnetic applications. The innovative combination of magnetic gradients and multipurpose separations will set new magnetic-based trends for large scale downstream processing.
Collapse
Affiliation(s)
- Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| | - Marco Eigenfeld
- Research Group Beverage and Cereal Biotechnology, Institute of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | - Thomas M Becker
- Research Group Beverage and Cereal Biotechnology, Institute of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
4
|
Schwaminger SP, Fraga-García P, Blank-Shim SA, Straub T, Haslbeck M, Muraca F, Dawson KA, Berensmeier S. Magnetic One-Step Purification of His-Tagged Protein by Bare Iron Oxide Nanoparticles. ACS OMEGA 2019; 4:3790-3799. [PMID: 31459591 PMCID: PMC6648446 DOI: 10.1021/acsomega.8b03348] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/04/2019] [Indexed: 05/21/2023]
Abstract
Magnetic separation is a promising alternative to conventional methods in downstream processing. This can facilitate easier handling, fewer processing steps, and more sustainable processes. Target materials can be extracted directly from crude cell lysates in a single step by magnetic nanoadsorbents with high-gradient magnetic fishing (HGMF). Additionally, the use of hazardous consumables for reducing downstream processing steps can be avoided. Here, we present proof of principle of one-step magnetic fishing from crude Escherichia coli cell lysate of a green fluorescent protein (GFP) with an attached hexahistidine (His6)-tag, which is used as the model target molecule. The focus of this investigation is the upscale to a liter scale magnetic fishing process in which a purity of 91% GFP can be achieved in a single purification step from cleared cell lysate. The binding through the His6-tag can be demonstrated, since no significant binding of nontagged GFP toward bare iron oxide nanoparticles (BIONs) can be observed. Nonfunctionalized BIONs with primary particle diameters of around 12 nm, as used in the process, can be produced with a simple and low-cost coprecipitation synthesis. Thus, HGMF with BIONs might pave the way for a new and greener era of downstream processing.
Collapse
Affiliation(s)
- Sebastian P. Schwaminger
- Bioseparation
Engineering Group, Department of Mechanical Engineering and Department of
Chemistry, Technical University of Munich, Garching 85748, Germany
- Centre
for BioNano Interactions, School of Chemistry and Chemical Biology
and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D14 YH57, Ireland
| | - Paula Fraga-García
- Bioseparation
Engineering Group, Department of Mechanical Engineering and Department of
Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Silvia A. Blank-Shim
- Bioseparation
Engineering Group, Department of Mechanical Engineering and Department of
Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Tamara Straub
- Bioseparation
Engineering Group, Department of Mechanical Engineering and Department of
Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Martin Haslbeck
- Bioseparation
Engineering Group, Department of Mechanical Engineering and Department of
Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Francesco Muraca
- Centre
for BioNano Interactions, School of Chemistry and Chemical Biology
and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D14 YH57, Ireland
| | - Kenneth A. Dawson
- Centre
for BioNano Interactions, School of Chemistry and Chemical Biology
and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D14 YH57, Ireland
| | - Sonja Berensmeier
- Bioseparation
Engineering Group, Department of Mechanical Engineering and Department of
Chemistry, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
5
|
Schwaminger SP, Blank-Shim SA, Scheifele I, Pipich V, Fraga-García P, Berensmeier S. Design of Interactions Between Nanomaterials and Proteins: A Highly Affine Peptide Tag to Bare Iron Oxide Nanoparticles for Magnetic Protein Separation. Biotechnol J 2018; 14:e1800055. [DOI: 10.1002/biot.201800055] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/16/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Sebastian P. Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich; 85748 Garching bei München Germany
| | - Silvia A. Blank-Shim
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich; 85748 Garching bei München Germany
| | - Isabell Scheifele
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich; 85748 Garching bei München Germany
| | - Vitaliy Pipich
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH; 85748 Garching bei München Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich; 85748 Garching bei München Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich; 85748 Garching bei München Germany
| |
Collapse
|
6
|
Fraga-García P, Kubbutat P, Brammen M, Schwaminger S, Berensmeier S. Bare Iron Oxide Nanoparticles for Magnetic Harvesting of Microalgae: From Interaction Behavior to Process Realization. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E292. [PMID: 29723963 PMCID: PMC5977306 DOI: 10.3390/nano8050292] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
Abstract
Microalgae continue to gain in importance as a bioresource, while their harvesting remains a major challenge at the moment. This study presents findings on microalgae separation using low-cost, easy-to-process bare iron oxide nanoparticles with the additional contribution of the upscaling demonstration of this simple, adhesion-based process. The high affinity of the cell wall for the inorganic surface enables harvesting efficiencies greater than 95% for Scenedesmus ovalternus and Chlorella vulgaris. Successful separation is possible in a broad range of environmental conditions and primarily depends on the nanoparticle-to-microalgae mass ratio, whereas the effect of pH and ionic strength are less significant when the mass ratio is chosen properly. The weakening of ionic concentration profiles at the interphase due to the successive addition of deionized water leads the microalgae to detach from the nanoparticles. The process works efficiently at the liter scale, enabling complete separation of the microalgae from their medium and the separate recovery of all materials (algae, salts, and nanoparticles). The current lack of profitable harvesting processes for microalgae demands innovative approaches to encourage further development. This application of magnetic nanoparticles is an example of the prospects that nanobiotechnology offers for biomass exploitation.
Collapse
Affiliation(s)
- Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Peter Kubbutat
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Markus Brammen
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Sebastian Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| |
Collapse
|
7
|
Ebeler M, Pilgram F, Wolz K, Grim G, Franzreb M. Magnetic Separation on a New Level: Characterization and Performance Prediction of a cGMP Compliant "Rotor-Stator" High-Gradient Magnetic Separator. Biotechnol J 2017; 13. [PMID: 29058374 DOI: 10.1002/biot.201700448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/26/2017] [Indexed: 11/07/2022]
Abstract
The growing market of biopharmaceuticals and the constant developments in upstream fermentation have generated a strong demand for new downstream purification methods. Magnetic separation in combination with functional magnetic particles has been known for many years as a promising candidate for a direct capturing tool in protein purification but the lack of suitable GMP-compliant purification equipment has prevented the launch of this technology in large scale bioprocessing. To tackle this bottle-neck, the principle of a "rotor-stator" high-gradient magnetic separator is fully redesigned to meet the rigorous requirements of modern cGMP biotechnology purification processes. In order to fulfill regulatory requirements, the separation chamber is reengineered to allow effective cleaning and sterilization in place while maintaining excellent separation capacities and efficiencies. Two kinds of commercially available magnetic particles are used to validate key performance data and determine system related parameters in order to calculate process performance figures for process optimization of the new magnetic separation device. With separation capacities of over 400 g of magnetic particles per liter of separation chamber volume and separation efficiencies as well as recovery rates over 99%, the system is able to process more than 200 l crude feedstock per day and capture more than 1.6 kg target compounds.
Collapse
Affiliation(s)
- Moritz Ebeler
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Florian Pilgram
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Kai Wolz
- ANDRITZ KMPT GmbH, Vierkirchen, Germany
| | | | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Roth H, Schwaminger SP, Peng F, Berensmeier S. Immobilization of Cellulase on Magnetic Nanocarriers. ChemistryOpen 2016; 5:183-187. [PMID: 27957407 PMCID: PMC5130178 DOI: 10.1002/open.201600028] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 12/26/2022] Open
Abstract
The constant increase in the number of sustainable products on the global markets demands new biotechnological processing strategies such as the purification and recovery of biocatalysts. Superparamagnetic iron oxide nanoparticles exhibit excellent recovery properties as carrier materials in enzyme catalysis. We present the simple and fast electrostatic assembly of cellulase (CEL) and low-priced silica-coated magnetic nanoparticles, which demonstrates stable enzyme bonding and excellent colloidal stability. The high CEL loading (0.43 g g-1), without leaching of biocatalyst and high recovery yields (75 %), could be sustained over ten magnetic recycling steps. The highlight of this study is the preservation of a high enzymatic activity and, therefore, the outstandingly high lifecycle stability.
Collapse
Affiliation(s)
- Hans‐Christian Roth
- Technical University of MunichBoltzmannstraße 1585748Garching bei MünchenGermany
| | | | - Fei Peng
- Technical University of MunichBoltzmannstraße 1585748Garching bei MünchenGermany
| | - Sonja Berensmeier
- Technical University of MunichBoltzmannstraße 1585748Garching bei MünchenGermany
| |
Collapse
|