1
|
Mahroof M, Dar RA, Nazir R, Ali MN, Ganai BA. Valorization of rice straw and vascular aquatic weeds for sustainable prebiotic hemicellulosic autohydrolysate production: Extraction, characterization and fermentability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35744-35759. [PMID: 38744764 DOI: 10.1007/s11356-024-33611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
This study describes the extraction and characterization of the hemicellulosic autohydrolysates (HAHs) derived from rice straw (RS) and vascular aquatic weeds like Typha angustifolia (TA) and Ceretophyllum demersum (CD). It further explores their capacity to sustain the proliferation of selected lactic acid bacteria (i.e., prebiotic activity) isolated from milk samples. To fractionate HAH from RS, TA and CD hot water extraction (HWE) method was used and RS, TA, and CD biomasses yielded 6.8, 4.99 and 2.98% of HAH corresponding to the hemicellulose extraction efficiencies of 26.15 ± 0.8%, 23.76 ± 0.6%, and 18.62 ± 0.4% respectively. The chemical characterization of HAH concentrates through HPLC showed that they comprised galactose, arabinose, xylose and glucose. The total phenol content of the RS, TA and CD-derived HAH concentrates were 37.53, 56.78 and 48.08 mg GAE/g. The five lactic acid bacteria (LAB) isolates Q1B, Q2A, Q3B, G1C and G2B selected for prebiotic activity assays generated mixed responses with the highest growth in RS-HAH for Q2A and the least in TA-HAH for Q3B. Further, the isolates Q2A, Q3B, G1C, and G2B, which showed the highest growth performance, were identified through MALDI-TOF and 16S rRNA sequencing as Lactobacillus brevis. All the tested LAB isolates showed diauxic growth in crude HAH preparations to maximize the utilization of carbon resources for their proliferation. This suggests that the selected LAB isolates are efficient degraders of hemicellulosic sugars. This paves the way for the valorization of lignocellulosic biomass to produce prebiotic hemicellulosic autohydrolysate and consequently enhances environmental sustainability by improving resource efficiency.
Collapse
Affiliation(s)
- Mawish Mahroof
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Rouf Ahmad Dar
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India.
| | - Ruqeya Nazir
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Md Niamat Ali
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| |
Collapse
|
2
|
Tanis MH, Wallberg O, Galbe M, Al-Rudainy B. Lignin Extraction by Using Two-Step Fractionation: A Review. Molecules 2023; 29:98. [PMID: 38202680 PMCID: PMC10779531 DOI: 10.3390/molecules29010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Lignocellulosic biomass represents the most abundant renewable carbon source on earth and is already used for energy and biofuel production. The pivotal step in the conversion process involving lignocellulosic biomass is pretreatment, which aims to disrupt the lignocellulose matrix. For effective pretreatment, a comprehensive understanding of the intricate structure of lignocellulose and its compositional properties during component disintegration and subsequent conversion is essential. The presence of lignin-carbohydrate complexes and covalent interactions between them within the lignocellulosic matrix confers a distinctively labile nature to hemicellulose. Meanwhile, the recalcitrant characteristics of lignin pose challenges in the fractionation process, particularly during delignification. Delignification is a critical step that directly impacts the purity of lignin and facilitates the breakdown of bonds involving lignin and lignin-carbohydrate complexes surrounding cellulose. This article discusses a two-step fractionation approach for efficient lignin extraction, providing viable paths for lignin-based valorization described in the literature. This approach allows for the creation of individual process streams for each component, tailored to extract their corresponding compounds.
Collapse
Affiliation(s)
| | | | | | - Basel Al-Rudainy
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (M.H.T.); (O.W.); (M.G.)
| |
Collapse
|
3
|
Liu Y, Wang E, Kan Z, Liu B. Effect of CaO and hydrothermal carbonization conditions on the fuel characteristics of rice husk hydrochars. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1777-1784. [PMID: 35670383 DOI: 10.1177/0734242x221105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The effects of hydrothermal temperature and catalyst concentration on the basic elements and combustion characteristics and kinetic parameters of hydrochars were investigated using ultimate analyzer and thermogravimetric method with rice husk as the research object and CaO as the additives. The results showed that: (1) the fixed carbon content of hydrochars gradually increased with the increase of hydrothermal temperature, whereas the volatile content gradually decreased. When CaO was added, the changes of fixed carbon and volatile fraction gradually decreased with the increase of hydrothermal temperature, and H/C atomic ratio increased to different degrees, which had a certain inhibitory effect on the degree of hydrothermal carbonization of rice husk. (2) The peak of the volatile fraction combustion section of hydrochars combustion derivative thermogravimetric curve was higher than that of the fixed carbon combustion section. CaO concentration has less effect on the volatile combustion section, and the combustion peak of the fixed carbon section is significantly reduced. (3) When the heating rate of the combustion test is accelerated, the ignition and burnout temperatures of the sample increase and the overall combustion curve shifts to the high temperature region. (4) The comprehensive combustion index SN decreases with the increase in hydrothermal temperature. When the hydrothermal temperature is certain, the CaO concentration causes the SN to increase and then decrease, which finally reduces the combustion performance of hydrochars. (5) The activation energy of the fixed carbon combustion section of hydrochars is lower than that of the volatile combustion section, and the activation energy of both volatile and fixed carbon combustion sections gradually decreases after adding CaO. The primary reaction kinetic model was used to describe the combustion kinetics of hydrochars, and the correlation coefficients (R2) were all above 0.92, and the results were reliable.
Collapse
Affiliation(s)
- Yaoxin Liu
- School of Energy and Power, Shenyang Institute of Engineering, Shenyang, China
| | - Enyu Wang
- Graduate Faculty, Shenyang Institute of Engineering, Shenyang, China
| | - Ze Kan
- Graduate Faculty, Shenyang Institute of Engineering, Shenyang, China
| | - Baotong Liu
- International Business School, Shenyang Normal University, Shenyang, China
| |
Collapse
|
4
|
Zhao X, Yang Y, Xu J, Wang X, Guo Y, Liu C, Zhou J. Lignin condensation inhibition and antioxidant activity improvement in a reductive ternary DES fractionation microenvironment by thiourea dioxide self-decomposition. NEW J CHEM 2022. [DOI: 10.1039/d2nj00821a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deep eutectic solvents (DESs) as promising green solvents can efficiently remove the lignin component in lignocellulosic biomass.
Collapse
Affiliation(s)
- Xin Zhao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yingying Yang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jingyu Xu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chao Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| | - Jinghui Zhou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
5
|
Sun Q, Chen WJ, Pang B, Sun Z, Lam SS, Sonne C, Yuan TQ. Ultrastructural change in lignocellulosic biomass during hydrothermal pretreatment. BIORESOURCE TECHNOLOGY 2021; 341:125807. [PMID: 34474237 DOI: 10.1016/j.biortech.2021.125807] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
In recent years, visualization and characterization of lignocellulose at different scales elucidate the modifications of its ultrastructural and chemical features during hydrothermal pretreatment which include degradation and dissolving of hemicelluloses, swelling and partial hydrolysis of cellulose, melting and redepositing a part of lignin in the surface. As a result, cell walls are swollen, deformed and de-laminated from the adjacent layer, lead to a range of revealed droplets that appear on and within cell walls. Moreover, the certain extent morphological changes significantly promote the downstream processing steps, especially for enzymatic hydrolysis and anaerobic fermentation to bioethanol by increasing the contact area with enzymes. However, the formation of pseudo-lignin hinders the accessibility of cellulase to cellulose, which decreases the efficiency of enzymatic hydrolysis. This review is intended to bridge the gap between the microstructure studies and value-added applications of lignocellulose while inspiring more research prospects to enhance the hydrothermal pretreatment process.
Collapse
Affiliation(s)
- Qian Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Wei-Jing Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Bo Pang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China.
| |
Collapse
|
6
|
Chemical composition and porcine in vitro digestibility of corn whole stillage pretreated with heat at various temperatures and times. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Ghimire N, Bakke R, Bergland WH. Liquefaction of lignocellulosic biomass for methane production: A review. BIORESOURCE TECHNOLOGY 2021; 332:125068. [PMID: 33849751 DOI: 10.1016/j.biortech.2021.125068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Hydrothermal pretreatment (HTP) (Hot water extraction (HWE) and steam pretreatment) and pyrolysis have the potential to liquefy lignocellulosic biomass. HTP produces hydrolysate, consisting mainly of solubilized hemicellulose, while pyrolysis produces aqueous pyrolysis liquid (APL). The liquid products, either as main products or by-product, can be used as anaerobic digestion (AD) feeds, overcoming shortcomings of solid-state AD (SS-AD). This paper reviews HWE, steam pretreatment, and pyrolysis pretreatment methods used to liquefy lignocellulosic biomass, AD of liquefied products, effects of inhibition from intermediate by-products such as furan and phenolic compounds, and pretreatment tuning to increase methane yield. HTP, focusing on methane production, produces less inhibitory compounds when carried out at moderate temperatures. APL is a challenging feed for AD due to its complexity, including various inhibitory substances. Pre-treatment of biomass before pyrolysis, adaptation of microorganism to inhibitors, and additives, such as biochar, may help the AD cultures cope with inhibitors in APL.
Collapse
Affiliation(s)
- Nirmal Ghimire
- Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Kjølnes Ring 56, NO-3918 Porsgrunn, Norway.
| | - Rune Bakke
- Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Kjølnes Ring 56, NO-3918 Porsgrunn, Norway
| | - Wenche Hennie Bergland
- Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Kjølnes Ring 56, NO-3918 Porsgrunn, Norway
| |
Collapse
|
8
|
Rajan K, D’Souza DH, Kim K, Choi JM, Elder T, Carrier DJ, Labbé N. Production and Characterization of High Value Prebiotics From Biorefinery-Relevant Feedstocks. Front Microbiol 2021; 12:675314. [PMID: 33995339 PMCID: PMC8116503 DOI: 10.3389/fmicb.2021.675314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Hemicellulose, a structural polysaccharide and often underutilized co-product stream of biorefineries, could be used to produce prebiotic ingredients with novel functionalities. Since hot water pre-extraction is a cost-effective strategy for integrated biorefineries to partially fractionate hemicellulose and improve feedstock quality and performance for downstream operations, the approach was applied to process switchgrass (SG), hybrid poplar (HP), and southern pine (SP) biomass at 160°C for 60 min. As a result, different hemicellulose-rich fractions were generated and the chemical characterization studies showed that they were composed of 76-91% of glucan, xylan, galactan, arabinan, and mannan oligosaccharides. The hot water extracts also contained minor concentrations of monomeric sugars (≤18%), phenolic components (≤1%), and other degradation products (≤3%), but were tested for probiotic activity without any purification. When subjected to batch fermentations by individual cultures of Lactobacillus casei, Bifidobacterium bifidum, and Bacteroides fragilis, the hemicellulosic hydrolysates elicited varied responses. SG hydrolysates induced the highest cell count in L. casei at 8.6 log10 cells/ml, whereas the highest cell counts for B. fragilis and B. bifidum were obtained with southern pine (5.8 log10 cells/ml) and HP hydrolysates (6.4 log10 cells/ml), respectively. The observed differences were attributed to the preferential consumption of mannooligosaccharides in SP hydrolysates by B. fragilis. Lactobacillus casei preferentially consumed xylooligosaccharides in the switchgrass and southern pine hydrolysates, whereas B. bifidum consumed galactose in the hybrid poplar hydrolysates. Thus, this study (1) reveals the potential to produce prebiotic ingredients from biorefinery-relevant lignocellulosic biomass, and (2) demonstrates how the chemical composition of hemicellulose-derived sources could regulate the viability and selective proliferation of probiotic microorganisms.
Collapse
Affiliation(s)
- Kalavathy Rajan
- Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Doris H. D’Souza
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Keonhee Kim
- Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Joseph Moon Choi
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Thomas Elder
- USDA-Forest Service, Southern Research Station, Auburn, AL, United States
| | - Danielle Julie Carrier
- Department of Biosystems Engineering and Soil Science, The University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Nicole Labbé
- Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Forestry, Wildlife and Fisheries, The University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| |
Collapse
|
9
|
Lin CY, Donohoe BS, Bomble YJ, Yang H, Yunes M, Sarai NS, Shollenberger T, Decker SR, Chen X, McCann MC, Tucker MP, Wei H, Himmel ME. Iron incorporation both intra- and extra-cellularly improves the yield and saccharification of switchgrass (Panicum virgatum L.) biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:55. [PMID: 33663584 PMCID: PMC7931346 DOI: 10.1186/s13068-021-01891-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pretreatments are commonly used to facilitate the deconstruction of lignocellulosic biomass to its component sugars and aromatics. Previously, we showed that iron ions can be used as co-catalysts to reduce the severity of dilute acid pretreatment of biomass. Transgenic iron-accumulating Arabidopsis and rice plants exhibited higher iron content in grains, increased biomass yield, and importantly, enhanced sugar release from the biomass. RESULTS In this study, we used intracellular ferritin (FerIN) alone and in combination with an improved version of cell wall-bound carbohydrate-binding module fused iron-binding peptide (IBPex) specifically targeting switchgrass, a bioenergy crop species. The FerIN switchgrass improved by 15% in height and 65% in yield, whereas the FerIN/IBPex transgenics showed enhancement up to 30% in height and 115% in yield. The FerIN and FerIN/IBPex switchgrass had 27% and 51% higher in planta iron accumulation than the empty vector (EV) control, respectively, under normal growth conditions. Improved pretreatability was observed in FerIN switchgrass (~ 14% more glucose release than the EV), and the FerIN/IBPex plants showed further enhancement in glucose release up to 24%. CONCLUSIONS We conclude that this iron-accumulating strategy can be transferred from model plants and applied to bioenergy crops, such as switchgrass. The intra- and extra-cellular iron incorporation approach improves biomass pretreatability and digestibility, providing upgraded feedstocks for the production of biofuels and bioproducts.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- Present Address: Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
- Present Address: Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Haibing Yang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
- Present Address: South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Manal Yunes
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- Present Address: Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Nicholas S. Sarai
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- Present Address: Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 USA
| | - Todd Shollenberger
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Stephen R. Decker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Xiaowen Chen
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Maureen C. McCann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| | - Melvin P. Tucker
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| |
Collapse
|
10
|
Wells JM, Drielak E, Surendra KC, Kumar Khanal S. Hot water pretreatment of lignocellulosic biomass: Modeling the effects of temperature, enzyme and biomass loadings on sugar yield. BIORESOURCE TECHNOLOGY 2020; 300:122593. [PMID: 31881517 DOI: 10.1016/j.biortech.2019.122593] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 05/28/2023]
Abstract
Experimental conditions of liquid hot water (LHW) pretreatment were tested for two dedicated energy crops, Napiergrass (Pennisetum purpureum) and Energycane (Saccharum officinarum × Saccharum robustum). Both crops showed differential resistance to temperature during pretreatment and differences in response to biomass and enzyme loadings during subsequent enzymatic hydrolysis. Sugar response surfaces, for both glucose release per g pretreated biomass and as percent yield of glucose present in the initial biomass, were estimated using a General Additive Model (GAM) in R to compare non-linear sugar release as temperature, and biomass and enzyme loadings were manipulated. Compared to Napiergrass, more structural glucose is estimated to be recovered from Energycane per g of pretreated biomass under relatively less harsh pretreatment conditions, however, Napiergrass had the highest measured glucose yield. Sugar degradation products (furfural and hydroxymethylfurfural), pH, and biomass recovery differed significantly between crops across pretreatment temperatures, which could adversely affect downstream biochemical processes.
Collapse
Affiliation(s)
- Jon M Wells
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Edward Drielak
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| |
Collapse
|
11
|
Cheng YS, Wu ZY, Sriariyanun M. Evaluation of Macaranga tanarius as a biomass feedstock for fermentable sugars production. BIORESOURCE TECHNOLOGY 2019; 294:122195. [PMID: 31610492 DOI: 10.1016/j.biortech.2019.122195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Macaranga tanarius is a fast-growing tree species that could be potentially utilized as a biomass feedstock for biorefinery. The average productivity of M. tanarius biomass was estimated to be ~19.2 ton/ha if the above-ground biomass is harvested bi-annually. Different pretreatment approaches were investigated to increase the enzymatic digestibility of foliage and woody biomass. The results indicated that no pretreatment was required for the foliage biomass while sequential acid/alkali pretreatment was necessary for the woody biomass before enzymatic hydrolysis. For the woody biomass, the delignification was 34.5% after sequential dilute acid/alkali pretreatment. The reducing sugar yields from enzymatic hydrolysis of foliage and pretreated woody biomass were 0.31 and 0.42 g/g dry biomass, respectively. The results also showed that both hydrolysates were fermentable by lactic acid bacteria. Overall, the results suggested that M. tanarius could be a potential feedstock for biorefinery based on the findings and processes derived from this study.
Collapse
Affiliation(s)
- Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan.
| | - Zer-Yu Wu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan
| | - Malinee Sriariyanun
- The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangsue, Bangkok 10800, Thailand
| |
Collapse
|
12
|
Diboune N, Nancib A, Nancib N, Aníbal J, Boudrant J. Utilization of prickly pear waste for baker's yeast production. Biotechnol Appl Biochem 2019; 66:744-754. [DOI: 10.1002/bab.1753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/16/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Naàssa Diboune
- Laboratory of Applied Microbiology Ferhat Abbas University, Setif Algeria
- Characterization and Valorization Laboratory of Natural Resources Bordj Bou Arreridj University Algeria
| | - Aicha Nancib
- Laboratory of Applied Microbiology Ferhat Abbas University, Setif Algeria
| | - Nabil Nancib
- Laboratory of Applied Microbiology Ferhat Abbas University, Setif Algeria
| | - Jaime Aníbal
- Department of Food Engineering Institute of Engineering University of Algarve Faro Portugal
- CIMA‐Centre of Marine and Environmental Research University of Algarve Faro Portugal
| | - Joseph Boudrant
- Laboratory Reactions and Process Engineering (LRPE), UMR CNRS 7224 University of Lorraine, ENSAIA Vandoeuvre Cedex France
| |
Collapse
|
13
|
Liu CG, Xiao Y, Xia XX, Zhao XQ, Peng L, Srinophakun P, Bai FW. Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnol Adv 2019; 37:491-504. [DOI: 10.1016/j.biotechadv.2019.03.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 11/16/2022]
|
14
|
Rizal NFAA, Ibrahim MF, Zakaria MR, Abd-Aziz S, Yee PL, Hassan MA. Pre-treatment of Oil Palm Biomass for Fermentable Sugars Production. Molecules 2018; 23:E1381. [PMID: 29880760 PMCID: PMC6099572 DOI: 10.3390/molecules23061381] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 11/16/2022] Open
Abstract
Malaysia is the second largest palm oil producer in the world and this industry generates more than 80 million tonnes of biomass every year. When considering the potential of this biomass to be used as a fermentation feedstock, many studies have been conducted to develop a complete process for sugar production. One of the essential processes is the pre-treatment to modify the lignocellulosic components by altering the structural arrangement and/or removing lignin component to expose the internal structure of cellulose and hemicellulose for cellulases to digest it into sugars. Each of the pre-treatment processes that were developed has their own advantages and disadvantages, which are reviewed in this study.
Collapse
Affiliation(s)
- Nur Fatin Athirah Ahmad Rizal
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohd Rafein Zakaria
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Phang Lai Yee
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
15
|
Zhu L, Jin F, Fan M, Liu J, Chang R, Jia Q, Tang C, Li Q. Bio-Oil as a Potential Biomass-Derived Renewable Raw Material for Bio-Phenol Production. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201700625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lijuan Zhu
- University of Science & Technology of China; School of Chemistry and Materials Science; Department of Chemical Physics, Hefei; 230026 Anhui China
| | - Feng Jin
- University of Science & Technology of China; School of Chemistry and Materials Science; Department of Chemical Physics, Hefei; 230026 Anhui China
| | - Minghui Fan
- Anhui Tobacco Industrial Co., Ltd.; Anhui Key Laboratory of Tobacco Chemistry; 9 Tianda Road, Hefei 230088 Anhui China
| | - Junxu Liu
- University of Science & Technology of China; School of Chemistry and Materials Science; Department of Chemical Physics, Hefei; 230026 Anhui China
| | - Rui Chang
- University of Science & Technology of China; School of Chemistry and Materials Science; Department of Chemical Physics, Hefei; 230026 Anhui China
| | - Qifang Jia
- University of Science & Technology of China; School of Chemistry and Materials Science; Department of Chemical Physics, Hefei; 230026 Anhui China
| | - Chi Tang
- University of Science & Technology of China; School of Chemistry and Materials Science; Department of Chemical Physics, Hefei; 230026 Anhui China
| | - Quanxin Li
- University of Science & Technology of China; School of Chemistry and Materials Science; Department of Chemical Physics, Hefei; 230026 Anhui China
| |
Collapse
|
16
|
Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 2018; 47:852-908. [PMID: 29318245 DOI: 10.1039/c7cs00566k] [Citation(s) in RCA: 848] [Impact Index Per Article: 141.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In pursuit of more sustainable and competitive biorefineries, the effective valorisation of lignin is key. An alluring opportunity is the exploitation of lignin as a resource for chemicals. Three technological biorefinery aspects will determine the realisation of a successful lignin-to-chemicals valorisation chain, namely (i) lignocellulose fractionation, (ii) lignin depolymerisation, and (iii) upgrading towards targeted chemicals. This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations. To navigate the reader through the overwhelming collection of literature on each topic, distinct strategies/topics were delineated and summarised in comprehensive overview figures. Upon closer inspection, conceptual principles arise that rationalise the success of certain methodologies, and more importantly, can guide future research to further expand the portfolio of promising technologies. When targeting chemicals, a key objective during the fractionation and depolymerisation stage is to minimise lignin condensation (i.e. formation of resistive carbon-carbon linkages). During fractionation, this can be achieved by either (i) preserving the (native) lignin structure or (ii) by tolerating depolymerisation of the lignin polymer but preventing condensation through chemical quenching or physical removal of reactive intermediates. The latter strategy is also commonly applied in the lignin depolymerisation stage, while an alternative approach is to augment the relative rate of depolymerisation vs. condensation by enhancing the reactivity of the lignin structure towards depolymerisation. Finally, because depolymerised lignins often consist of a complex mixture of various compounds, upgrading of the raw product mixture through convergent transformations embodies a promising approach to decrease the complexity. This particular upgrading approach is termed funneling, and includes both chemocatalytic and biological strategies.
Collapse
Affiliation(s)
- W Schutyser
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | | | | | | | | | | |
Collapse
|
17
|
Mihiretu GT, Brodin M, Chimphango AF, Øyaas K, Hoff BH, Görgens JF. Single-step microwave-assisted hot water extraction of hemicelluloses from selected lignocellulosic materials - A biorefinery approach. BIORESOURCE TECHNOLOGY 2017; 241:669-680. [PMID: 28609755 DOI: 10.1016/j.biortech.2017.05.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
The viability of single-step microwave-induced pressurized hot water conditions for co-production of xylan-based biopolymers and bioethanol from aspenwood sawdust and sugarcane trash was investigated. Extraction of hemicelluloses was conducted using microwave-assisted pressurized hot water system. The effects of temperature and time on extraction yield and enzymatic digestibility of resulting solids were determined. Temperatures between 170-200°C for aspenwood and 165-195°C for sugarcane trash; retention times between 8-22min for both feedstocks, were selected for optimization purpose. Maximum xylan extraction yields of 66 and 50%, and highest cellulose digestibilities of 78 and 74%, were attained for aspenwood and sugarcane trash respectively. Monomeric xylose yields for both feedstocks were below 7%, showing that the xylan extracts were predominantly in non-monomeric form. Thus, single-step microwave-assisted hot water method is viable biorefinery approach to extract xylan from lignocelluloses while rendering the solid residues sufficiently digestible for ethanol production.
Collapse
Affiliation(s)
- Gezahegn T Mihiretu
- Stellenbosch University, Process Engineering Department, Stellenbosch 7602, South Africa; Paper and Fibre Research Institute (PFI), Høgskoleringen 6B, NO-7491 Trondheim, Norway.
| | - Malin Brodin
- Paper and Fibre Research Institute (PFI), Høgskoleringen 6B, NO-7491 Trondheim, Norway
| | - Annie F Chimphango
- Stellenbosch University, Process Engineering Department, Stellenbosch 7602, South Africa
| | - Karin Øyaas
- Paper and Fibre Research Institute (PFI), Høgskoleringen 6B, NO-7491 Trondheim, Norway
| | - Bård H Hoff
- Norwegian University of Science and Technology (NTNU), Department of Chemistry, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Johann F Görgens
- Stellenbosch University, Process Engineering Department, Stellenbosch 7602, South Africa
| |
Collapse
|
18
|
Qin CX, Lin C, Tang J, Xi ZH, Zhao L. Subcritical water hydrolysis of nylon 6 extract concentrate. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.22966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chun Xi Qin
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai, 200237 China
| | - Cheng Lin
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai, 200237 China
| | - Jie Tang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai, 200237 China
| | - Zhen Hao Xi
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai, 200237 China
- State Key Laboratory of Chemical Engineering; East China University of Science and Technology; Shanghai, 200237 China
| | - Ling Zhao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai, 200237 China
- State Key Laboratory of Chemical Engineering; East China University of Science and Technology; Shanghai, 200237 China
| |
Collapse
|
19
|
Isa KM, Kasim FH, Saad SA, Rahim MAA, Aziz MAA, Ali UFM. Influence of Operating Parameters on Biomass Conversion under Sub- and Supercritical Water Conditions. Chem Eng Technol 2017. [DOI: 10.1002/ceat.201600343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Khairuddin Md Isa
- Universiti Malaysia Perlis UniMAP; School of Environmental Engineering; Kompleks Pusat Pengajian Jejawi 3 02600 Arau, Perlis Malaysia
- Universiti Malaysia Perlis; Centre of Excellence for Biomass Utilisation; 02600 Arau Malaysia
| | - Farizul Hafiz Kasim
- Universiti Malaysia Perlis; Centre of Excellence for Biomass Utilisation; 02600 Arau Malaysia
| | - Saiful Azhar Saad
- Universiti Malaysia Perlis UniMAP; School of Environmental Engineering; Kompleks Pusat Pengajian Jejawi 3 02600 Arau, Perlis Malaysia
| | - Mohd Asri Ab Rahim
- Universiti Malaysia Perlis UniMAP; School of Environmental Engineering; Kompleks Pusat Pengajian Jejawi 3 02600 Arau, Perlis Malaysia
| | - Mohd Aizudin Abd Aziz
- Universiti Malaysia Pahang; Faculty of Chemical & Natural Resources Engineering; Lebuhraya Tun Razak 26300 Gambang, Kuantan, Pahang Malaysia
| | - Umi Fazara Md Ali
- Universiti Malaysia Perlis UniMAP; School of Environmental Engineering; Kompleks Pusat Pengajian Jejawi 3 02600 Arau, Perlis Malaysia
| |
Collapse
|
20
|
Li M, Cao S, Meng X, Studer M, Wyman CE, Ragauskas AJ, Pu Y. The effect of liquid hot water pretreatment on the chemical-structural alteration and the reduced recalcitrance in poplar. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:237. [PMID: 29213308 PMCID: PMC5707831 DOI: 10.1186/s13068-017-0926-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/06/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Hydrothermal pretreatment using liquid hot water (LHW) is capable of substantially reducing the cell wall recalcitrance of lignocellulosic biomass. It enhances the saccharification of polysaccharides, particularly cellulose, into glucose with relatively low capital required. Due to the close association with biomass recalcitrance, the structural change of the components of lignocellulosic materials during the pretreatment is crucial to understand pretreatment chemistry and advance the bio-economy. Although the LHW pretreatment has been extensively applied and studied, the molecular structural alteration during pretreatment and its significance to reduced recalcitrance have not been well understood. RESULTS We investigated the effects of LHW pretreatment with different severity factors (log R0) on the structural changes of fast-grown poplar (Populus trichocarpa). With the severity factor ranging from 3.6 to 4.2, LHW pretreatment resulted in a substantial xylan solubilization by 50-77% (w/w, dry matter). The molecular weights of the remained hemicellulose in pretreated solids also have been significantly reduced by 63-75% corresponding to LHW severity factor from 3.6 to 4.2. In addition, LHW had a considerable impact on the cellulose structure. The cellulose crystallinity increased 6-9%, whereas its degree of polymerization decreased 35-65% after pretreatment. We found that the pretreatment severity had an empirical linear correlation with the xylan solubilization (R2 = 0.98, r = + 0.99), hemicellulose molecular weight reduction (R2 = 0.97, r = - 0.96 and R2 = 0.93, r = - 0.98 for number-average and weight-average degree of polymerization, respectively), and cellulose crystallinity index increase (R2 = 0.98, r = + 0.99). The LHW pretreatment also resulted in small changes in lignin structure such as decrease of β-O-4' ether linkages and removal of cinnamyl alcohol end group and acetyl group, while the S/G ratio of lignin in LHW pretreated poplar residue remained no significant change compared with the untreated poplar. CONCLUSIONS This study revealed that the solubilization of xylan, the reduction of hemicellulose molecular weights and cellulose degree of polymerization, and the cleavage of alkyl-aryl ether bonds in lignin resulted from LHW pretreatment are critical factors associated with reduced cell wall recalcitrance. The chemical-structural changes of the three major components, cellulose, lignin, and hemicellulose, during LHW pretreatment provide useful and fundamental information of factors governing feedstock recalcitrance during hydrothermal pretreatment.
Collapse
Affiliation(s)
- Mi Li
- BioEnergy Science Center (BESC), Oak Ridge, USA
- Biosciences Division, ORNL, Oak Ridge, TN USA
| | - Shilin Cao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA USA
- Present Address: College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN USA
| | - Michael Studer
- BioEnergy Science Center (BESC), Oak Ridge, USA
- College of Engineering - Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, CA USA
- Present Address: Laboratory for Bioenergy and Biochemicals, School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Bern, Switzerland
| | - Charles E. Wyman
- BioEnergy Science Center (BESC), Oak Ridge, USA
- College of Engineering - Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, CA USA
| | - Arthur J. Ragauskas
- BioEnergy Science Center (BESC), Oak Ridge, USA
- Biosciences Division, ORNL, Oak Ridge, TN USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN USA
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN USA
| | - Yunqiao Pu
- BioEnergy Science Center (BESC), Oak Ridge, USA
- Biosciences Division, ORNL, Oak Ridge, TN USA
| |
Collapse
|