1
|
Chen H, Wang C, Zhang J, Shi Y, Liu Y, Qian Z. NO x attenuation in flue gas by •OH/SO 4•--based advanced oxidation processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37468-37487. [PMID: 32681339 DOI: 10.1007/s11356-020-09782-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The combustion of fossil fuels has resulted in rapidly increasing emissions of nitrogen oxide (NOx), which has caused serious human health and environmental problems. NO capture has become a research focus in gas purification because NO accounts for more than 90% of NOx and is difficult to remove. Advanced oxidation processes (AOPs), features the little secondary pollution and the broad-spectrum strong oxidation of hydroxyl radicals (•OH), are effective and promising strategies for NO removal from coal-fired flue gas. This review provides the state of the art of NO removal by AOPs, highlighting several methods for producing •OH and SO4•-. According to the main radicals responsible for NO removal, these processes are classified into two categories: hydroxyl radical-based AOPs (HR-AOPs) and sulfate radical-based AOPs (SR-AOPs). This paper also reviews the mechanisms of NO capture by reactive oxygen species (ROS) and SO4•- in various AOPs. A HiGee (high-gravity) enhanced AOP process for improving NO removal, characterized by intensified gas-liquid mass transfer and efficient micro-mixing, is then proposed and discussed in brief. We believe that this review will be useful for workers in this field. Graphical abstract.
Collapse
Affiliation(s)
- Hongyu Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuicui Wang
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahao Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijie Shi
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuexian Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Qian
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Zhao Y, Wang J, Cai X, Ding P, Lv H, Pei R. Metal-Organic Frameworks with Enhanced Photodynamic Therapy: Synthesis, Erythrocyte Membrane Camouflage, and Aptamer-Targeted Aggregation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23697-23706. [PMID: 32362109 DOI: 10.1021/acsami.0c04363] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, ferric oxide-loaded metal-organic framework (FeTCPP/Fe2O3 MOF) nanorice was designed and constructed by the liquid diffusion method. The introduction of iron metal nodes and the loading of Fe2O3 can effectively catalyze the Fenton reaction to produce hydroxyl radicals (•OH) and overcome the hypoxic environment of tumor tissue by generating oxygen. The monodispersity and porosity of the porphyrin photosensitizers in the MOF structure exposed more active sites, which promoted energy exchange between porphyrin molecules and oxygen molecules for photodynamic therapy (PDT) treatment. Therefore, the generated hydroxyl radicals and singlet oxygen (1O2) can synergistically act on tumor cells to achieve the purpose of improving tumor therapy. Then the erythrocyte membrane was camouflaged to enhance blood circulation and tissue residence time in the body, and finally, the targeted molecule AS1411 aptamer was modified to achieve the high enrichment of MOF photosensitizers on a tumor domain. As a result, the MOF nanorice camouflaged by the erythrocyte membrane can effectively reduce side effects and improve the therapeutic effect of PDT and chemo-dynamic therapy (CDT). The study not only improved the efficacy of PDT and CDT in essence from the MOF nanorice but also used the camouflage method to further concentrate FeTCPP/Fe2O3 on the tumor sites, achieving the goal of multiple gains. These results will provide theoretical and practical directions for the development of tumor-targeted MOF nanomaterials.
Collapse
Affiliation(s)
- Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xue Cai
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Haiyin Lv
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
3
|
Yuan B, Mao X, Wang Z, Hao R, Zhao Y. Radical-induced oxidation removal of multi-air-pollutant: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121162. [PMID: 31520933 DOI: 10.1016/j.jhazmat.2019.121162] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 05/21/2023]
Abstract
Sulfur dioxide (SO2), nitric oxide (NO) and elemental mercury (Hg0) are three common air pollutants in flue gas. SO2 and NO are the main precursors for chemical smog and Hg0 is a bio-toxicant for human. Cooperative removal of multi-air-pollutant in flue gas using radical-induced oxidation reaction is considered as one of the most promising methods due to the high removal efficiency, low cost and less secondary environmental impact. The common radicals used in air pollution control can be classified into four types: (1) hydroxyl radical (OH), (2) sulfate radical (SO4-), (3) chlorine-containing radicals (Cl, ClO2, ClO, HOCl-, etc.) and (4) ozone. This review summarizes the generation methods and mechanism of the four kinds of radicals, as well as their applications in the removal of multi-air-pollutant in flue gas. The reactivity, selectivity and reaction mechanism of the four kinds of radicals in multi-air-pollutant removal were comprehensively described. Finally, some future research suggestions on the development of new technique for cooperative removal of multi-air-pollutant in flue gas were provided.
Collapse
Affiliation(s)
- Bo Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xingzhou Mao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Zheng Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Runlong Hao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Yi Zhao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|