1
|
Development and Characterization of Activated Carbon from Olive Pomace: Experimental Design, Kinetic and Equilibrium Studies in Nimesulide Adsorption. MATERIALS 2021; 14:ma14226820. [PMID: 34832222 PMCID: PMC8622804 DOI: 10.3390/ma14226820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/29/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
The lack of adequate treatment for the removal of pollutants from domestic, hospital and industrial effluents has caused great environmental concern. Therefore, there is a need to develop materials that have the capacity to treat these effluents. This work aims to develop and characterize an activated charcoal from olive pomace, which is an agro-industrial residue, for adsorption of Nimesulide in liquid effluent and to evaluate the adsorption kinetics and equilibrium using experimental design. The raw material was oven dried at 105 °C for 24 h, ground, chemically activated in a ratio of 1:0.8:0.2 of olive pomace, zinc chloride and calcium hydroxide and thermally activated by pyrolysis in a reactor of stainless steel at 550 °C for 30 min. The activated carbon was characterized by Fourier Transform Infrared (FTIR) spectroscopy, X-ray Diffractometry (XRD), Brunauer, Emmett and Teller (BET) method, Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), density and zero charge potential analysis. The surface area obtained was 650.9 m2 g−1. The kinetic and isothermal mathematical models that best described the adsorption were PSO and Freundlich and the highest adsorption capacity obtained was 353.27 mg g−1. The results obtained showed the good performance of activated carbon produced from olive pomace as an adsorbent material and demonstrated great potential for removing emerging contaminants such as Nimesulide.
Collapse
|
2
|
Assessment of the Composition of Forest Waste in Terms of Its Further Use. MATERIALS 2021; 14:ma14040973. [PMID: 33670829 PMCID: PMC7922906 DOI: 10.3390/ma14040973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 01/11/2023]
Abstract
This paper presents the results of the analysis of the chemical composition and content of heavy metal contamination in forest logging residues, in order to assess the possibility for their further utilisation. The samples were divided into 9 groups, which included coniferous tree cones, wood, and other multi-species logging residues. The elementary composition, ash content, and calorific value were determined as energy use indicators for the samples. Additionally, the content of heavy and alkali metals, which may affect combustion processes and pollutant emissions, was tested. The high content of heavy metals may also disqualify these residues for other uses. The research shows that the test residues are suitable for energy use due to their high calorific value and low content of heavy metals. However, an increased ash content in some samples and the presence of alkali metals, causing high-temperature corrosion of boilers, may disqualify them as a potential fuel in the combustion process. The forest residues may be used in other thermal processes such as pyrolysis or gasification. A low content of heavy metals and a high content of organic matter permit the use of these residues for the production of adsorbents or composite materials.
Collapse
|
3
|
Li WQ, Liu D, Qu JY, Luo JH. Hydrothermal synthesis of a novel nanolayered tin phosphate for removing Cr(iii). RSC Adv 2021; 11:3202-3208. [PMID: 35424310 PMCID: PMC8694007 DOI: 10.1039/d0ra08775k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022] Open
Abstract
In this work, an outstanding nanolayered tin phosphate with 15.0 Å interlayer spacing, Sn (HPO4)2·3H2O (SnP–H+), has been synthesized by conventional hydrothermal method and first used in the adsorptive removal of Cr(iii) from aqueous solution. A number of factors such as contact time, initial concentration of Cr(iii), temperature, pH, and ionic strength on adsorption were investigated by batch tests. Moreover, the isothermal adsorption characteristics and kinetic model of Cr(iii) onto SnP–H+ were studied. The results showed that the adsorption of Cr(iii) by SnP–H+ was in accordance with the Langmuir adsorption isotherm model and the pseudo-second-order kinetic model. The adsorption capacity of Cr(iii) onto SnP–H+ at temperature 40.0 °C and pH 3.0 could reach 81.1 mg g−1. And the distribution coefficient Kd was 23.0 g L−1. Overall, experiments certified that SnP–H+ was an excellent adsorbent that can effectively remove Cr(iii) from aqueous solution. In this work, an outstanding nanolayered tin phosphate with 15.0 Å interlayer spacing, Sn (HPO4)2·3H2O (SnP–H+), has been synthesized by conventional hydrothermal method and first used in the adsorptive removal of Cr(iii) from aqueous solution.![]()
Collapse
Affiliation(s)
- Wei-Qi Li
- Dep. of Chemical Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Duan Liu
- Dep. of Chemical Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Ji-Yan Qu
- Dep. of Chemical Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Jian-Hong Luo
- Dep. of Chemical Engineering, Sichuan University Chengdu Sichuan 610065 China
| |
Collapse
|
4
|
Huang D, Li B, Ou J, Xue W, Li J, Li Z, Li T, Chen S, Deng R, Guo X. Megamerger of biosorbents and catalytic technologies for the removal of heavy metals from wastewater: Preparation, final disposal, mechanism and influencing factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:109879. [PMID: 32148248 DOI: 10.1016/j.jenvman.2019.109879] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/09/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal pollution, because of its high toxicity, non-biodegradability and biological enrichment, has been identified as a global aquatic ecosystems threat in recent decades. Due to the high efficiency, low cost, satisfactory recyclability, easy storage and separation, biosorbents have exhibited a promising prospect for heavy metals treatment in aqueous phase. This article comprehensively summarized different types of biosorbents derived from available low-cost raw materials such as agricultural and forestry wastes. The raw materials obtained are treated with conventional pretreatment or novel methods, which can greatly enhance the adsorption performance of the biosorbents. The suitable immobilization methods can not only further enhance the adsorption performance of the biosorbents, but also facilitate the process of separating the biosorbents from the wastewater. In addition, once biosorbents are put into large-scale use, the final disposal problems cannot be avoided. Therefore, it is necessary to review the currently accepted final disposal methods of biosorbents. Moreover, through the analysis of the adsorption and desorption mechanisms of biosorbents, it is not only beneficial to find the better methods to improve the adsorption performance of the biosorbents, but also better to explain the influencing factors of adsorption effect for biosorbents. Especially, different from many researches focused on biosorbents, this work highlighted the combination of biosorbents with catalytic technologies, which provided new ideas for the follow-up research direction of biosorbents. Finally, the purpose of this paper is to inject new impetus into the future development of biosorbents.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China.
| | - Bo Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Jing Ou
- School of Design, Hunan University, Changsha, 410082, PR China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Jing Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Zhihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Tao Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Rui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Xueying Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
5
|
Godinho D, Nogueira M, Bernardo M, Dias D, Lapa N, Fonseca I, Pinto F. Recovery of Cr(III) by using chars from the co-gasification of agriculture and forestry wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22723-22735. [PMID: 31168718 DOI: 10.1007/s11356-019-05609-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
The aim of the present work was to assess the efficiency of biochars obtained from the co-gasification of blends of rice husk + corn cob (biochar 50CC) and rice husk + eucalyptus stumps (biochar 50ES), as potential renewable low-cost adsorbents for Cr(III) recovery from wastewaters. The two gasification biochars presented a weak porous structure (ABET = 63-144 m2 g-1), but a strong alkaline character, promoted by a high content of mineral matter (59.8% w/w of ashes for 50CC biochar and 81.9% w/w for 50ES biochar). The biochars were used for Cr(III) recovery from synthetic solutions by varying the initial pH value (3, 4, and 5), liquid/solid (L/S) ratio (100-500 mL g-1), contact time (1-120 h), and initial Cr(III) concentration (10-150 mg L-1). High Cr(III) removal percentages (around 100%) were obtained for both biochars, due to Cr precipitation, at low L/S ratios (100 and 200 mL g-1), for the initial pH 5 and initial Cr concentration of 50 mg L-1. Under the experimental conditions in which other removal mechanisms rather than precipitation occurred, a higher removal percentage (49.9%) and the highest uptake capacity (6.87 mg g-1) were registered for 50CC biochar. In the equilibrium, 50ES biochar presented a Cr(III) removal percentage of 27% with a maximum uptake capacity of 2.58 mg g-1. The better performance on Cr(III) recovery for the biochar 50CC was attributed to its better textural properties, as well as its higher cation exchange capacity.
Collapse
Affiliation(s)
- Delfina Godinho
- REQUIMTE-LAQV, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Ed. Departamental, 2829-516, Caparica, Portugal
| | - Miguel Nogueira
- REQUIMTE-LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Ed. Departamental, 2829-516, Caparica, Portugal
| | - Maria Bernardo
- REQUIMTE-LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Ed. Departamental, 2829-516, Caparica, Portugal
| | - Diogo Dias
- REQUIMTE-LAQV, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Ed. Departamental, 2829-516, Caparica, Portugal
| | - Nuno Lapa
- REQUIMTE-LAQV, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Ed. Departamental, 2829-516, Caparica, Portugal.
| | - Isabel Fonseca
- REQUIMTE-LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Ed. Departamental, 2829-516, Caparica, Portugal
| | - Filomena Pinto
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, Ed. J, 1649-038, Lisbon, Portugal
| |
Collapse
|
6
|
Arim AL, Guzzo G, Quina MJ, Gando-Ferreira LM. Single and binary sorption of Cr(III) and Ni(II) onto modified pine bark. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28039-28049. [PMID: 30066077 DOI: 10.1007/s11356-018-2843-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
This study aims to investigate the single and binary biosorption of Cr(III) and Ni(II) by pine bark chemically treated with NaOH solution (MPB). The studies involved the effect of initial pH in the equilibrium, as well as kinetic uptake using synthetic solutions. Equilibrium tests were also conducted with an industrial effluent. The kinetic model of pseudo-second order described well the data of single and binary systems. The equilibrium data were better described by the Langmuir model for both metals. The maximum adsorption capacity (qmax) to single system was 31.4 and 23.7 mg/g for Cr(III) and Ni(II), respectively. To analyse the competitive sorption between chromium and nickel ions, the modified Langmuir and Freundlich models were tested for two different concentration (mEq/L) ratios Cr(III)/Ni(II) of 1:1 and 2:1. The modified Langmuir model is also the best to fit the experimental data for both syntetic and industrial effluents. In the synthetic effluent, the qmax value for Cr(III) in MPB was about 25 mg/g, while qmax for Ni(II) decreased from 12.4 to 5.5 mg/g. The results showed that Ni(II) did not significantly interfere in Cr(III) adsorption capacity, whereas Cr(III) decreased the uptake of Ni(II). The industrial effluent contains several species, and thus, the sorption capacities for Cr(III) and Ni(II) were significantly affected.
Collapse
Affiliation(s)
- Aline L Arim
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
- Federal University of Pampa (UNIPAMPA), Bagé, RS, Brazil
| | - Gaetano Guzzo
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
- Università Campus Bio-Medico (UCBM), Rome, Italy
| | - Margarida J Quina
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - Licínio M Gando-Ferreira
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790, Coimbra, Portugal.
| |
Collapse
|