1
|
Ben Aissa MA, Khairy M, Khalifa ME, Abdelrahman EA, Raza N, Masoud EM, Modwi A. Facile synthesis of TiO 2@ZnO nanoparticles for enhanced removal of methyl orange and indigo carmine dyes: Adsorption, kinetics. Heliyon 2024; 10:e31351. [PMID: 38831816 PMCID: PMC11145501 DOI: 10.1016/j.heliyon.2024.e31351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Water pollution represents one of the most important problems affecting the health of living organisms, so it was necessary to work on the formation of active materials to get rid of pollutants. In this study, Titanium dioxide (TiO2) doping Zinc oxide (ZnO) nanocomposites were produced via simple sonication method at 500 Hz in ethanol medium. At different weight concentrations (2.5, 5, 7.5, and 10 %). The morphology, structure configuration, chemical bonding, crystalline phase, and surface properties of obtained nanocomposites were characterized via FESEM, BET, XRD, XPS, RAMAN and FTIR instrumentation. The nanocomposites were employed as an adsorbent to eliminate the methyl orange (MO) and Indigo Carmine (IC) dyes from an aqueous solution. Batch removal experiments revealed that the elimination of MO and IC dyes by the TiZnO surface was pH and doping Ti concentration-dependent, with maximum removal occurring at pH = 7 for MO and pH = 3 for IC contaminants at 10 % doping Ti concentration (Ti (10 %)@ZnO). Langmuir model fit the absorptive removal of MO and IC dyes into the Ti (10 %)@ZnO surface well. The maximal removal capacity of Ti (10 %)@ZnO nanocomposite was found to be 994.24 mg. g-1 for MO and 305.39 mg. g-1 for IC. The Ti (10 %)@ZnO nanocomposite showed remarkable high stability towards the removal of both dyes through consecutive four cycles.
Collapse
Affiliation(s)
- Mohamed Ali Ben Aissa
- Department of Chemistry, College of Science, Qassim University, P. O. Box: 6644, Buraydah 51452, Saudi Arabia
| | - M. Khairy
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Magdi E. Khalifa
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ehab A. Abdelrahman
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Nadeem Raza
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Emad M. Masoud
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia
| | - Abueliz Modwi
- Department of Chemistry, College of Science, Qassim University, P. O. Box: 6644, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Mei M, Le Men C, Loubière K, Hébrard G, Dietrich N. Taylor bubble formation and flowing in a straight millimetric channel with a cross-junction inlet geometry Part II: Gas-liquid mass transfer. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Hirano H, Tsuzaki S, Obata H, Kihara T. A colorimetric method for quantitative visualization of diffusion and internal circulation in liquid–liquid two-phase flow. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Yang L, Xu F, Chen G. Enhancement of gas-liquid mass transfer and mixing in zigzag microreactor under ultrasonic oscillation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Gaddem MR, Ookawara S, Nigam KD, Yoshikawa S, Matsumoto H. Numerical modeling of segmented flow in coiled flow inverter: Hydrodynamics and mass transfer studies. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Schuler J, Neuendorf LM, Petersen K, Kockmann N. Micro‐computed
tomography for the
3D time‐resolved
investigation of monodisperse droplet generation in a
co‐flow
setup. AIChE J 2020. [DOI: 10.1002/aic.17111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Julia Schuler
- Laboratory of Equipment Design, Department of Biochemical and Chemical Engineering TU Dortmund University Dortmund Germany
| | - Laura Maria Neuendorf
- Laboratory of Equipment Design, Department of Biochemical and Chemical Engineering TU Dortmund University Dortmund Germany
| | - Kai Petersen
- Laboratory of Equipment Design, Department of Biochemical and Chemical Engineering TU Dortmund University Dortmund Germany
| | - Norbert Kockmann
- Laboratory of Equipment Design, Department of Biochemical and Chemical Engineering TU Dortmund University Dortmund Germany
| |
Collapse
|
7
|
Mei M, Hébrard G, Dietrich N, Loubière K. Gas-liquid mass transfer around Taylor bubbles flowing in a long, in-plane, spiral-shaped milli-reactor. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115717] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Krieger W, Bayraktar E, Mierka O, Kaiser L, Dinter R, Hennekes J, Turek S, Kockmann N. Arduino‐based slider setup for gas–liquid mass transfer investigations: Experiments and CFD simulations. AIChE J 2020. [DOI: 10.1002/aic.16953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Waldemar Krieger
- Department of Biochemical and Chemical Engineering, Laboratory of Equipment DesignTU Dortmund University Dortmund Germany
| | - Evren Bayraktar
- Department of Mathematics, Institute of Applied MathematicsTU Dortmund University Dortmund Germany
| | - Otto Mierka
- Department of Mathematics, Institute of Applied MathematicsTU Dortmund University Dortmund Germany
| | - Lutz Kaiser
- Department of Biochemical and Chemical Engineering, Laboratory of Equipment DesignTU Dortmund University Dortmund Germany
| | - Robin Dinter
- Department of Biochemical and Chemical Engineering, Laboratory of Equipment DesignTU Dortmund University Dortmund Germany
| | - Julian Hennekes
- Department of Biochemical and Chemical Engineering, Laboratory of Equipment DesignTU Dortmund University Dortmund Germany
| | - Stefan Turek
- Department of Mathematics, Institute of Applied MathematicsTU Dortmund University Dortmund Germany
| | - Norbert Kockmann
- Department of Biochemical and Chemical Engineering, Laboratory of Equipment DesignTU Dortmund University Dortmund Germany
| |
Collapse
|