Employing computational fluid dynamics technique for analyzing the PACK-1300XY with methanol and isopropanol mixture.
Sci Rep 2022;
12:6588. [PMID:
35449440 PMCID:
PMC9023593 DOI:
10.1038/s41598-022-10590-5]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/11/2022] [Indexed: 11/08/2022] Open
Abstract
In this study, an innovative wire gauze structured packing, namely PACK-1300XY with a specific surface area of 1300 m2/m3 has been characterized by performing computational fluid dynamics (CFD) approach. Indeed, different features of this packing (height equivalent to a theoretical plate, wet/dry pressure drop, and mass transfer efficiency) were analyzed by analyzing the flow regime using the three-dimensional CFD approach with the Eulerian-Eulerian multiphase scenario. The results showed the mean relative deviation of 16% (for wet pressure drop), 14% (for dry pressure drop), and 17% (for mass transfer efficiency) between the CFD predictions and experimental measurements. These excellent levels of consistency between the numerical findings and experimental observations approve the usefulness of the CFD-based approach for reliable simulation of separation processes.
Collapse