1
|
Fernández-Marchante CM, Vieira Dos Santos E, Souza FL, Martínez-Huitle CA, Rodríguez-Gómez A, Lobato J, Rodrigo MA. Environmental impact assessment of the electrokinetic adsorption barriers to remove different herbicides from agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172287. [PMID: 38593877 DOI: 10.1016/j.scitotenv.2024.172287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
In this study, the sustainability of the electrokinetic remediation soil flushing (EKSFs) process integrated without and with adsorption barriers (EKABs) have been evaluated for the treatment of four soils contaminated with Atrazine, Oxyfluorfen, Chlorosulfuron and 2,4-D. To this purpose, the environmental effects of both procedures (EKSFs and EKABs) have been determined through a life cycle assessment (LCA). SimaPro 9.3.0.3 was used as software tool and Ecoinvent 3.3 as data base to carry out the inventory of the equipment of each remediation setup based on experimental measurements. The environmental burden was quantified using the AWARE, USEtox, IPPC, and ReCiPe methods into 3 Endpoint impact categories (and damage to human health, ecosystem and resources) and 7 Midpoints impact categories (water footprint, global warming potential, ozone depletion, human toxicity (cancer and human non-cancer), freshwater ecotoxicity and terrestrial ecotoxicity). In general terms, the energy applied to treatment (using the Spanish energy mix) was the parameter with the greatest influence on the carbon footprint, ozone layer depletion and water footprint accounting for around 70 % of the overall impact contribution. On the other hand, from the point of view of human toxicity and freshwater ecotoxicity of soil treatments with 32 mg kg-1 of the different pesticides, the EKSF treatment is recommended for soils with Chlorosulfuron. In this case, the carbon footprint and water footprint reached values around 0.36 kg of CO2 and 114 L of water per kg of dry soil, respectively. Finally, a sensitivity analysis was performed assuming different scenarios.
Collapse
Affiliation(s)
- C M Fernández-Marchante
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, Ciudad Real 13071, Spain.
| | - E Vieira Dos Santos
- Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry, Federal University of Rio Grande do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, CEP 59078-970 Natal, Rio Grande do Norte, Brazil
| | - F L Souza
- São Carlos Institute of Chemistry, University of São Paulo (USP), Trabalhador São-carlense street 400, SP, São Carlos 13566-590, Brazil
| | - C A Martínez-Huitle
- Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry, Federal University of Rio Grande do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, CEP 59078-970 Natal, Rio Grande do Norte, Brazil
| | - A Rodríguez-Gómez
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, Ciudad Real 13071, Spain
| | - J Lobato
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, Ciudad Real 13071, Spain
| | - M A Rodrigo
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, Ciudad Real 13071, Spain
| |
Collapse
|
2
|
Fernández-Marchante CM, Souza FL, Millán M, Lobato J, Rodrigo MA. Can the green energies improve the sustainability of electrochemically-assisted soil remediation processes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149991. [PMID: 34482137 DOI: 10.1016/j.scitotenv.2021.149991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The green powering of electrochemically-assisted soil remediation processes had been strongly discouraged. Low remediation efficiencies have been reported as a consequence of the reversibility of the transport processes when no power is applied to the electrodes, due to the intermittent powering of renewable sources. However, it has been missed a deeper evaluation from the environmental point of view. This work goes further and seeks to quantify, using life cycle assessment tools, the environmental impacts related to the electro-kinetic treatments powered by different sources: grid (Spanish energy mix), photovoltaic and wind sources. The global warming potential and the ozone depletion showed higher environmental impacts in case of using green energies, associated with the manufacturing of the energy production devices. In contrast to that, results pointed out the lowest water consumption for the treatment powered with solar panels. The huge water requirements to produce energy, considering a Spanish energy mix, drop the sustainability of this powering strategy in terms of water footprint. Regarding toxicities, the pollutant toxicity was highly got rid of after 15 days of treatment, regardless the powering source used. Nevertheless, the manufacturing of energy and green energy production devices has a huge impact into the toxicity of the remediation treatments, increasing massively the total toxicity of the process, being this effect less prominent by the electro-kinetic treatment solar powered. In view of the overall environmental impact assessed, according to mid and endpoint impact categories, it can be claimed that, despite the high energy requirements and affectation to the global warming potential, the use of solar power is a more sustainable alternative to remediate polluted soils by electrochemical techniques.
Collapse
Affiliation(s)
- C M Fernández-Marchante
- Department of Chemical Engineering, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain.
| | - F L Souza
- Department of Chemical Engineering, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - M Millán
- Department of Chemical Engineering, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - J Lobato
- Department of Chemical Engineering, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - M A Rodrigo
- Department of Chemical Engineering, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
3
|
Maldonado S, López-Vizcaíno R, Rodrigo MA, Cañizares P, Navarro V, Roa G, Barrera C, Sáez C. Scale-up of electrokinetic permeable reactive barriers for the removal of organochlorine herbicide from spiked soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126078. [PMID: 33992923 DOI: 10.1016/j.jhazmat.2021.126078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
This work aims to shed light on the scale-up a combined electrokinetic soil flushing process (EKSF) with permeable reactive barriers (PRB) for the treatment of soil spiked with clopyralid. To do this, remediation tests at lab (3.45 L), bench (175 L) and pilot (1400 L) scales have been carried out. The PRB selected was made of soil merged with particles of zero valent iron (ZVI) and granular activated carbon (GAC). Results show that PRB-EKSF involved electrokinetic transport and dehalogenation as the main mechanisms, while adsorption on GAC was not as relevant as initially expected. Clopyralid was not detected in the electrolyte wells and only in the pilot scale, significant amounts of clopyralid remained in the soil after 600 h of operation. Picolinic acid was the main dehalogenated product detected in the soil after treatment and mobilized by electro-osmosis, mostly to the cathodic well. The transport of volatile compounds into the atmosphere was promoted at pilot scale because of the larger soil surface exposed to the atmosphere and the electrical heating caused by ohmic losses and the larger interelectrode gap.
Collapse
Affiliation(s)
- S Maldonado
- Department of Environmental Chemistry, College of Chemistry, Autonomous University of the State of Mexico, 50120 Toluca de Lerdo, Mexico
| | - R López-Vizcaíno
- Geo-Environmental Group, Universidad de Castilla-La Mancha, Avda. Camilo José Cela s/n, Ciudad Real 13071, Spain
| | - M A Rodrigo
- Department of Chemical Engineering, College of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - P Cañizares
- Department of Chemical Engineering, College of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - V Navarro
- Geo-Environmental Group, Universidad de Castilla-La Mancha, Avda. Camilo José Cela s/n, Ciudad Real 13071, Spain
| | - G Roa
- Department of Environmental Chemistry, College of Chemistry, Autonomous University of the State of Mexico, 50120 Toluca de Lerdo, Mexico
| | - C Barrera
- Department of Environmental Chemistry, College of Chemistry, Autonomous University of the State of Mexico, 50120 Toluca de Lerdo, Mexico
| | - C Sáez
- Department of Chemical Engineering, College of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain.
| |
Collapse
|
4
|
Sahab S, Suhani I, Srivastava V, Chauhan PS, Singh RP, Prasad V. Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144164. [PMID: 33385648 DOI: 10.1016/j.scitotenv.2020.144164] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 05/09/2023]
Abstract
Soil salinization has become a major global agricultural issue that threatens sustainable development goals related to food security, agriculture, resource conservation, and nutrition. The higher levels of salinity have detrimental effects on soil physico-chemical and biological characteristics and plant metabolism. Also, salinity poses a negative impact on the abundance and distribution of soil microbes and soil-dwelling organisms. Research has always been trying to overcome the salinity issue, but it does not fit well in conventional approaches. This review unravels traditional and modern salinity management techniques. Out of the available salinity management techniques, some are focused on enhancing soil properties (chemical amendments, biochar, earthworms, and their vermicompost, compost, microbial inoculants, electro remediation), some focus on improving plant properties (seed priming, afforestation, crop selection, genetic improvements, agroforestry) and some techniques augment both soil as well as plant properties in a synergic manner. Therefore, it is imperative to find a conclusive solution by integrating traditional and modern methods to find the most effective response to regionally-specific salinity related problems. This review aimed at critical analysis of the salinity problems, its impact on agroecosystem, and different management approaches available to date with a balanced viewpoint that would help to draw a possible roadmap towards the future investigation in this domain for sustainable management of salinity issues around the globe.
Collapse
Affiliation(s)
- Sinha Sahab
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Ibha Suhani
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Vaibhav Srivastava
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Puneet Singh Chauhan
- Division of Plant-Microbe Interaction, CSIR-National Botanical Research Institute (NBRI), Lucknow, India
| | - Rajeev Pratap Singh
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi 221005, India.
| | - Vishal Prasad
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
Yang Y, Song J, Simmons CT, Ataie-Ashtiani B, Wu J, Wang J, Wu J. A conjunctive management framework for the optimal design of pumping and injection strategies to mitigate seawater intrusion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111964. [PMID: 33485034 DOI: 10.1016/j.jenvman.2021.111964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/20/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Coastal aquifer management (CAM) considering conjunctive optimization of pumping and injection system for seawater intrusion (SI) mitigation poses significant decision-making challenges. CAM needs to pose multiple objectives and massive decision variables to explore tradeoff strategies between the conflicting resources, economic, and environmental requirements. Here, we investigate a joint artificial injection scheme for ameliorating SI by establishing an evolutionary multi-objective decision-making framework that combines simulation-optimization (S-O) modelling with a cost-benefit analysis, and demonstrate the framework on a large-scale CAM case in Baldwin County, Alabama. First, a SI numerical model, using SEAWAT, was configured to predict the vulnerable region as an SI encroachment area with the scenarios of minimum and maximum pumping capacity. As a result, a smaller number of candidate sites were selected in the SI encroachment area for implementing groundwater injection to avoid the computationally infeasible SI optimization with an inordinate number of injection related decision variables. Second, the effective S-O methodology of niched Pareto tabu search combined with a genetic algorithm (NPTSGA), which considers the moving-well option, was applied to discover optimal pumping/injection (P/I) strategies (including P/I rates and injection well locations) between three conflicting management objectives under complicated SI constraints. Third, for practical operation of the P/I schemes, a cost-benefit analysis provides judgment criteria to allow decision-makers to implement more sustainable P/I strategies to capture the different realistic preferences. The implementation of three extreme optimization solutions for the case study indicates that, compared to the initial unoptimized scheme, a maximum increase of a factor of 3 in groundwater extraction rates, a maximum reduction of 17% in extent of SI, and a maximum 82.3 million US dollars in comprehensive benefits are specifically achieved by conjunctive P/I optimization. The robustness in the decision alternatives attributed to the uncertainty in physical parameters of hydraulic conductivity was discovered through global sensitivity analysis. The proposed framework provides a decision support system for multi-objective CAM with combined pumping control and engineering measures for SI mitigation.
Collapse
Affiliation(s)
- Yun Yang
- School of Earth Sciences and Engineering, Hohai University, Nanjing, China.
| | - Jian Song
- Key Laboratory of Surficial Geochemistry, Ministry of Education; Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China.
| | - Craig T Simmons
- National Centre for Groundwater Research and Training and College of Science & Engineering, Flinders University, Adelaide, South Australia, Australia.
| | - Behzad Ataie-Ashtiani
- National Centre for Groundwater Research and Training and College of Science & Engineering, Flinders University, Adelaide, South Australia, Australia; Department of Civil Engineering, Sharif University of Technology, Tehran, Iran.
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education; Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China.
| | - Jinguo Wang
- School of Earth Sciences and Engineering, Hohai University, Nanjing, China.
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education; Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Liu Y, Ke X, Wu X, Ke C, Chen R, Chen X, Zheng X, Jin Y, Van der Bruggen B. Simultaneous Removal of Trivalent Chromium and Hexavalent Chromium from Soil Using a Modified Bipolar Membrane Electrodialysis System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13304-13313. [PMID: 32955252 DOI: 10.1021/acs.est.0c04105] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, a modified bipolar membrane electrodialysis system equipped with a "back-to-back" soil compartment was fabricated for simultaneous removal of trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)) from contaminated soils. The results showed that the soil solution pH had a significant effect on the Cr(III) and Cr(VI) desorption, and the desorption data fit well with the Elovich kinetic model. Current density had an obvious effect on Cr(III) and Cr(VI) removal, cell voltage, soil pH, current efficiency, and specific energy consumption, and the optimal current density was 2.0 mA/cm2. The removal efficiencies of Cr(III) and Cr(VI) were both 99.8%, while Cr(III) and Cr(VI) recoveries were somewhat lower at 87 and 90%, respectively, because some Cr(III) and Cr(VI) were adsorbed by the membranes. An energy consumption analysis indicates that the back-to-back soil compartment equipped system increased the current efficiency and decreased the specific energy consumption. When a system equipped with two back-to-back soil compartments was used to remove chromium from soil, the current efficiency increased to 28.8% and the specific energy consumption decreased to 0.048 kWh/g. The experimental results indicate that the proposed process has the potential to be an effective technique for the treatment of soil contaminated with heavy metals.
Collapse
Affiliation(s)
- Yaoxing Liu
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, Fujian Province, China
- Department of Chemical Engineering, ProcESS-Process Engineering for Sustainable System, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xiong Ke
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Xiaoyun Wu
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Chenjing Ke
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Riyao Chen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Xiao Chen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Xi Zheng
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Yanchao Jin
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, ProcESS-Process Engineering for Sustainable System, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
7
|
Removal of Hazardous Cationic Salt Pollutants During Electrochemical Treatment from Contaminated Mixed Heterogeneous Saline Soil. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-018-3551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Huang L, Lin Z, Quan X, Zhao Q, Yang W, Logan BE. Efficient In Situ Utilization of Caustic for Sequential Recovery and Separation of Sn, Fe, and Cu in Microbial Fuel Cells. ChemElectroChem 2018. [DOI: 10.1002/celc.201800431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology; Dalian University of Technology; Dalian 116024 China
| | - Zheqian Lin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology; Dalian University of Technology; Dalian 116024 China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology; Dalian University of Technology; Dalian 116024 China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resource and Environment; Harbin Institute of Technology; Harbin 150090 China
| | - Wulin Yang
- Department of Civil and Environmental Engineering; The Pennsylvania State University, University Park, Pennsylvania; 16802 USA
| | - Bruce E. Logan
- Department of Civil and Environmental Engineering; The Pennsylvania State University, University Park, Pennsylvania; 16802 USA
| |
Collapse
|
9
|
Sandu C, Popescu M, Rosales E, Bocos E, Pazos M, Lazar G, Sanromán MA. Electrokinetic-Fenton technology for the remediation of hydrocarbons historically polluted sites. CHEMOSPHERE 2016; 156:347-356. [PMID: 27183337 DOI: 10.1016/j.chemosphere.2016.04.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/30/2016] [Accepted: 04/30/2016] [Indexed: 06/05/2023]
Abstract
The feasibility of the electrokinetic-Fenton technology coupled with surfactants in the treatment of real historically hydrocarbons polluted soils has been studied. The characterisation of these soils from Spain and Romania was performed and identified as diesel and diesel-motor oil spillages, respectively. Moreover, the ageing of the spillages produced by the soil contamination was estimated showing the historical pollution of the sites (around 11 and 20 years for Romanian and Spanish soils, respectively). An ex-situ electrochemical treatment was performed to evaluate the adequacy of surfactants for the degradation of the hydrocarbons present in the soils. It was found an enhancement in the solubilisation and removal of TPHs with percentages increasing from 25.7 to 81.8% by the presence of Tween 80 for Spanish soil and from 15.1% to 71.6% for Triton X100 in Romanian soil. Therefore, the viability of coupling enhanced electrokinetic and Fenton remediation was evaluated through a simulated in-situ treatment at laboratory scale. The results demonstrated that the addition of the selected surfactants improved the solubilisation of the hydrocarbons and influenced the electroosmotic flow with a slight decrease. The efficiency of the treatment increased for both considered soil samples and a significant degradation level of the hydrocarbons compounds was observed. Buffering of pH coupled with the addition of a complexing agent showed to be important in the treatment process, facilitating the conditions for the degradation reactions that take place into the soil matrix. The results demonstrated the effectiveness of the selected techniques for remediation of the investigated soils.
Collapse
Affiliation(s)
- Ciprian Sandu
- Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain; Faculty of Engineering, "Vasile Alecsandri" University of Bacau, Calea Marasesti 157, 600115 Bacau, Romania
| | - Marius Popescu
- Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain; Faculty of Engineering, "Vasile Alecsandri" University of Bacau, Calea Marasesti 157, 600115 Bacau, Romania
| | - Emilio Rosales
- Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Elvira Bocos
- Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Marta Pazos
- Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Gabriel Lazar
- Faculty of Engineering, "Vasile Alecsandri" University of Bacau, Calea Marasesti 157, 600115 Bacau, Romania
| | - M Angeles Sanromán
- Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain.
| |
Collapse
|
10
|
|
11
|
dos Santos EV, Souza F, Saez C, Cañizares P, Lanza MRV, Martinez-Huitle CA, Rodrigo MA. Application of electrokinetic soil flushing to four herbicides: A comparison. CHEMOSPHERE 2016; 153:205-211. [PMID: 27016816 DOI: 10.1016/j.chemosphere.2016.03.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
In this work, four bench-scale plants containing soil spiked with four herbicides (2,4-Dichlorophenoxyacetic acid (2,4-D), oxyfluorfen, chlorsulfuron and atrazine) undergo treatment consisting of an electrokinetic soil flushing (EKSF). Results clearly demonstrate that efficiency of EKSF depends on the chemical characteristic of the pesticide used. The amount of pesticide collected in the anode well is more significant than that collected in the cathode wells, indicating that the electromigration is much more important than drainage by electro-osmotic flux for this application. After 15 d of treatment, the 2,4-D is the pesticide most efficiently removed (95% of removal), while chlorsulfuron is the pesticide more resilient to the treatment. Additionally, volatilization was found to be a process of the major significance in the application of electrokinetic techniques to soil polluted with herbicides and because of that it should always be taken into account in the future design of full-scale processes.
Collapse
Affiliation(s)
- E Vieira dos Santos
- Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP 59078-970, Natal, RN, Brazil
| | - F Souza
- Instituto de Química de São Carlos, Universidade de São Paulo, P.O. Box 780, CEP-13560-970, São Carlos, SP, Brazil
| | - C Saez
- Department of Chemical Engineering, Universidad de Castilla La Mancha, Facultad de Ciencias y Tecnologías Químicas, Enrique Costa Building, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - P Cañizares
- Department of Chemical Engineering, Universidad de Castilla La Mancha, Facultad de Ciencias y Tecnologías Químicas, Enrique Costa Building, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - M R V Lanza
- Instituto de Química de São Carlos, Universidade de São Paulo, P.O. Box 780, CEP-13560-970, São Carlos, SP, Brazil
| | - C A Martinez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP 59078-970, Natal, RN, Brazil
| | - M A Rodrigo
- Department of Chemical Engineering, Universidad de Castilla La Mancha, Facultad de Ciencias y Tecnologías Químicas, Enrique Costa Building, Campus Universitario s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
12
|
Li X, Wang X, Zhao Q, Zhang Y, Zhou Q. In Situ Representation of Soil/Sediment Conductivity Using Electrochemical Impedance Spectroscopy. SENSORS 2016; 16:s16050625. [PMID: 27144567 PMCID: PMC4883316 DOI: 10.3390/s16050625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/26/2016] [Accepted: 04/09/2016] [Indexed: 11/16/2022]
Abstract
The electrical conductivity (EC) of soil is generally measured after soil extraction, so this method cannot represent the in situ EC of soil (e.g., EC of soils with different moisture contents) and therefore lacks comparability in some cases. Using a resistance measurement apparatus converted from a configuration of soil microbial fuel cell, the in situ soil EC was evaluated according to the Ohmic resistance (Rs) measured using electrochemical impedance spectroscopy. The EC of soils with moisture content from 9.1% to 37.5% was calculated according to Rs. A significant positive correlation (R² = 0.896, p < 0.01) between the soil EC and the moisture content was observed, which demonstrated the feasibility of the approach. This new method can not only represent the actual soil EC, but also does not need any pretreatment. Thus it may be used widely in the measurement of the EC for soils and sediments.
Collapse
Affiliation(s)
- Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Yueyong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|