1
|
Saqib M, Zafar M, Halawa MI, Murtaza S, Kamal GM, Xu G. Nanoscale Luminescence Imaging/Detection of Single Particles: State-of-the-Art and Future Prospects. ACS MEASUREMENT SCIENCE AU 2024; 4:3-24. [PMID: 38404493 PMCID: PMC10885340 DOI: 10.1021/acsmeasuresciau.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
Single-particle-level measurements, during the reaction, avoid averaging effects that are inherent limitations of conventional ensemble strategies. It allows revealing structure-activity relationships beyond averaged properties by considering crucial particle-selective descriptors including structure/morphology dynamics, intrinsic heterogeneity, and dynamic fluctuations in reactivity (kinetics, mechanisms). In recent years, numerous luminescence (optical) techniques such as chemiluminescence (CL), electrochemiluminescence (ECL), and fluorescence (FL) microscopies have been emerging as dominant tools to achieve such measurements, owing to their diversified spectroscopy principles, noninvasive nature, higher sensitivity, and sufficient spatiotemporal resolution. Correspondingly, state-of-the-art methodologies and tools are being used for probing (real-time, operando, in situ) diverse applications of single particles in sensing, medicine, and catalysis. Herein, we provide a concise and comprehensive perspective on luminescence-based detection and imaging of single particles by putting special emphasis on their basic principles, mechanistic pathways, advances, challenges, and key applications. This Perspective focuses on the development of emission intensities and imaging based individual particle detection. Moreover, several key examples in the areas of sensing, motion, catalysis, energy, materials, and emerging trends in related areas are documented. We finally conclude with the opportunities and remaining challenges to stimulate further developments in this field.
Collapse
Affiliation(s)
- Muhammad Saqib
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mariam Zafar
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mohamed Ibrahim Halawa
- Department
of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain 15551, United Arab
Emirates
| | - Shahzad Murtaza
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ghulam Mustafa Kamal
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Guobao Xu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, 5625 Renmin
Street, Changchun, Jilin 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Arnaboldi S, Salinas G, Bonetti G, Cirilli R, Benincori T, Kuhn A. Bipolar electrochemical rotors for the direct transduction of molecular chiral information. Biosens Bioelectron 2022; 218:114740. [PMID: 36179630 DOI: 10.1016/j.bios.2022.114740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022]
Abstract
Efficient monitoring of chiral information of bioactive compounds has gained considerable attention, due to their involvement in different biochemical processes. In this work, we propose a novel dynamic system for the easy and straightforward recognition of chiral redox active molecules and its possible use for the efficient measurement of enantiomeric excess in solution. The approach is based on the synergy between the localized enantioselective oxidation of only one of the two antipodes of a chiral molecule and the produced charge-compensating asymmetric proton flux along a bipolar electrode. The resulting clockwise or anticlockwise rotation is triggered only when the probe with the right chirality is present in solution. The angle of rotation shows a linear correlation with the analyte concentration, enabling the quantification of enantiomeric ratios in mixtures where the two antipodes are present in solution. This device was successfully used to simultaneously measure different ratios of the enantiomers of 3,4-dihydroxyphenylalanine and tryptophan. The versatility of the proposed approach opens up the possibility to use such a dynamic system as a straightforward (bio)analytical tool for the qualitative and quantitative discrimination of different redox active chiral probes.
Collapse
Affiliation(s)
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33607, Pessac, France
| | - Giorgia Bonetti
- Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, Como, Italy
| | - Roberto Cirilli
- Istituto Superiore di Sanità, Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Rome, Italy
| | - Tiziana Benincori
- Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, Como, Italy
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33607, Pessac, France.
| |
Collapse
|
3
|
Kokubo Y, Asoh H. Two-step bipolar anodization: Design of titanium with two different faces. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
4
|
Zhang Q, Zhou H, Yang M, Tang X, Hong Q, Yang Z, Liu S, Chen J, Zhou G, Pan C. Fabrication and Formation Mechanism of Gradient TiO2 Nanotubes via Bipolar Anodization. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Takeuchi R, Asoh H. Effects of size and position of an unconnected aluminum electrode on bipolar anodization in an AC electric field. Sci Rep 2021; 11:22496. [PMID: 34795292 PMCID: PMC8602422 DOI: 10.1038/s41598-021-01633-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
The effects of the size and position of an aluminum bipolar electrode (BPE) on the uniformity of formation of anodic porous alumina in an alternating current electric field were investigated. Anodized specimens were dyed, and the resistance was measured after the specimens were anodized again. Phenomena observed during film formation indicated that the BPEs had unique potential distributions that strongly depended on their length and width. The color variations and electrical resistance of the BPEs were symmetrical and varied from the centers of the BPEs to their ends. When multiple BPEs were processed at the same time, their position in the non-uniform electric field was demonstrated to be an important factor for controlling the uniformity of film formation. The best results were obtained when the BPE was placed at the center of the defined space.
Collapse
Affiliation(s)
- Ryo Takeuchi
- Department of Applied Chemistry, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo, 192-0015, Japan
| | - Hidetaka Asoh
- Department of Applied Chemistry, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
6
|
Sopha H, Kashimbetova A, Hromadko L, Saldan I, Celko L, Montufar EB, Macak JM. Anodic TiO 2 Nanotubes on 3D-Printed Titanium Meshes for Photocatalytic Applications. NANO LETTERS 2021; 21:8701-8706. [PMID: 34609883 DOI: 10.1021/acs.nanolett.1c02815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, large 3D Ti meshes fabricated by direct ink writing were wirelessly anodized for the first time to prepare highly photocatalytically active TiO2 nanotube (TNT) layers. The use of bipolar electrochemistry enabled the fabrication of TNT layers within the 3D Ti meshes without the establishment of an electrical contact between Ti meshes and the potentiostat, confirming its unique ability and advantage for the synthesis of anodic structures on metallic substrates with a complex geometry. TNT layers with nanotube diameters of up to 110 nm and thicknesses of up to 3.3 μm were formed. The TNT-layer-modified 3D Ti meshes showed a superior performance for the photocatalytic degradation of methylene blue in comparison to TiO2-nanoparticle-decorated and nonanodized Ti meshes (with a thermal oxide layer), resulting in multiple increases in the dye degradation rate. The results presented here open new horizons for the employment of anodized 3D Ti meshes in various flow-through (photo)catalytic reactors.
Collapse
Affiliation(s)
- Hanna Sopha
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Adelia Kashimbetova
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Ludek Hromadko
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Ivan Saldan
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Ladislav Celko
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Edgar B Montufar
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Jan M Macak
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| |
Collapse
|
7
|
Sopha H, Rodriguez‐Pereira J, Cicmancova V, Macak JM. Wireless Anodization of Ti in Closed Bipolar Cells. ChemElectroChem 2021. [DOI: 10.1002/celc.202100799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hanna Sopha
- Center of Materials and Nanotechnologies Faculty of Chemical Technology University of Pardubice Nam. Cs. Legii 565 53002 Pardubice Czech Republic
- Central European Institute of Technology Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Jhonatan Rodriguez‐Pereira
- Center of Materials and Nanotechnologies Faculty of Chemical Technology University of Pardubice Nam. Cs. Legii 565 53002 Pardubice Czech Republic
- Central European Institute of Technology Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Veronika Cicmancova
- Center of Materials and Nanotechnologies Faculty of Chemical Technology University of Pardubice Nam. Cs. Legii 565 53002 Pardubice Czech Republic
| | - Jan M. Macak
- Center of Materials and Nanotechnologies Faculty of Chemical Technology University of Pardubice Nam. Cs. Legii 565 53002 Pardubice Czech Republic
- Central European Institute of Technology Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| |
Collapse
|
8
|
Sopha H, Hromadko L, Motola M, Macak JM. Fabrication of TiO2 nanotubes on Ti spheres using bipolar electrochemistry. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106669] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
9
|
Eid K, A. Soliman K, Abdulmalik D, Mitoraj D, Sleim MH, Liedke MO, El-Sayed HA, AlJaber AS, Y. Al-Qaradawi I, Mendoza Reyes O, Abdullah AM. Tailored fabrication of iridium nanoparticle-sensitized titanium oxynitride nanotubes for solar-driven water splitting: experimental insights on the photocatalytic–activity–defects relationship. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02366f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Uniform and vertically aligned nanotube arrays of titanium oxynitride functionalized with iridium nanoparticles (Ir/TiON-NTs) were fabricated for the solar driven-water splitting.
Collapse
Affiliation(s)
- Kamel Eid
- Center for Advanced Materials
- Qatar University
- Doha
- Qatar
| | - Khaled A. Soliman
- Physical Chemistry Department
- National Research Centre
- Cairo 12441
- Egypt
| | - Dana Abdulmalik
- Department of Mathematics
- Statistics and Physics
- College of Arts and Sciences
- Qatar University
- Doha 2713
| | | | | | - Maciej O. Liedke
- Institute of Radiation Physics
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden
- Germany
| | - Hany A. El-Sayed
- Department of Chemistry
- Technische Universität München
- Lichtenbergstrasse 4
- Garching
- Germany
| | - Amina S. AlJaber
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha 2713
- Qatar
| | - Ilham Y. Al-Qaradawi
- Department of Mathematics
- Statistics and Physics
- College of Arts and Sciences
- Qatar University
- Doha 2713
| | | | | |
Collapse
|
10
|
Li Y, Dong Y, Yang Y, Yu P, Zhang Y, Hu J, Li T, Zhang X, Liu X, Xu Q, Huang Q, Lin C. Rational Design of Silver Gradient for Studying Size Effect of Silver Nanoparticles on Contact Killing. ACS Biomater Sci Eng 2019; 5:425-431. [PMID: 33405808 DOI: 10.1021/acsbiomaterials.8b01282] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cellular mechanism underlying bacteria responses to silver nanoparticles (AgNPs) has not been fully elucidated. Especially, it is difficult to distinguish the contact killing from release killing as Ag+ releases from AgNPs. In this paper, AgNPs gradient was designed for evaluating the size effect of AgNPs on contact killing. A size gradient of AgNPs (5-45 nm) was achieved on TiO2 nanotubes (TNTs) by rational design of bipolar electrochemical reaction, including applied voltage, electrolyte concentration, and sample size. High-throughput investigation of cellular responses showed that the smallest AgNPs were the most efficient in suppressing bacteria whereas the largest AgNPs were more favorable for MC3T3-E1 cell adhesion and proliferation. As Ag+ concentration was the same for the entire gradient, the difference in cellular responses was dominated by the contact effect (rather than difference in released Ag+) which was tuned by AgNPs size. This method offers new prospect for efficient evaluation of the contact effect of nanoparticles, such as Ag, Au, and Cu.
Collapse
Affiliation(s)
- Yanran Li
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Yuanjun Dong
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Yun Yang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Ping Yu
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | | | | | - Tang Li
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Xiangyang Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Qingchi Xu
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Qiaoling Huang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | | |
Collapse
|
11
|
Bouffier L, Reculusa S, Ravaine V, Kuhn A. Modulation of Wetting Gradients by Tuning the Interplay between Surface Structuration and Anisotropic Molecular Layers with Bipolar Electrochemistry. Chemphyschem 2017; 18:2637-2642. [PMID: 28544447 DOI: 10.1002/cphc.201700398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/18/2017] [Indexed: 11/06/2022]
Abstract
A new simple and versatile method for the preparation of surface-wetting gradients is proposed. It is based on the combination of electrode surface structuration introduced by a sacrificial template approach and the formation of a tunable molecular gradient by bipolar electrochemistry. The gradient involves the formation of a self-assembled monolayer on a gold surface by selecting an appropriate thiol molecule and subsequent reductive desorption by means of bipolar electrochemistry. Under these conditions, completion of the reductive desorption process evolves along the bipolar surface with a maximum strength localized at the cathodic edge and a decreasing driving force towards the middle of the surface. The remaining quantity of surface-immobilized thiol, therefore, varies as a function of the axial position, resulting in the formation of a molecular gradient. The surface of the bipolar electrode is characterized at each step of the modification by recording heterogeneous electron transfer. Also, the evolution of static contact angles measured with a water droplet deposited on the surface directly reveals the presence of the wetting gradient, which can be modulated by changing the properties of the thiol. This is exemplified with a long, hydrophobic alkane-thiol and a short, hydrophilic mercaptan.
Collapse
Affiliation(s)
- Laurent Bouffier
- Univ. Bordeaux, ISM, UMR 5255, F-33400, Talence, France.,CNRS, ISM, UMR 5255, F-33400, Talence, France.,Bordeaux INP, ISM, UMR 5255, F-33400, Talence, France
| | - Stéphane Reculusa
- Univ. Bordeaux, ISM, UMR 5255, F-33400, Talence, France.,CNRS, ISM, UMR 5255, F-33400, Talence, France.,Bordeaux INP, ISM, UMR 5255, F-33400, Talence, France
| | - Valérie Ravaine
- Univ. Bordeaux, ISM, UMR 5255, F-33400, Talence, France.,CNRS, ISM, UMR 5255, F-33400, Talence, France.,Bordeaux INP, ISM, UMR 5255, F-33400, Talence, France
| | - Alexander Kuhn
- Univ. Bordeaux, ISM, UMR 5255, F-33400, Talence, France.,CNRS, ISM, UMR 5255, F-33400, Talence, France.,Bordeaux INP, ISM, UMR 5255, F-33400, Talence, France
| |
Collapse
|
12
|
Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G. Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem Soc Rev 2016; 45:715-52. [DOI: 10.1039/c5cs00297d] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New synthetic approaches, materials, properties, electroanalytical applications and perspectives of carbon materials are presented.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Shuyun Zhu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Rafael Luque
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Shuang Han
- Shenyang University of Chemical Technology
- Shenyang
- China
| | - Lianzhe Hu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
13
|
Abstract
Anodic porous alumina films can be formed by indirect oxidation under an alternating-current electric field without a direct electrical connection.
Collapse
Affiliation(s)
- Hidetaka Asoh
- Department of Applied Chemistry
- Kogakuin University
- Hachioji
- Japan
| | - Mami Ishino
- Department of Applied Chemistry
- Kogakuin University
- Hachioji
- Japan
| | | |
Collapse
|