1
|
Qin X, Gao J, Jin HJ, Li ZQ, Xia XH. Closed Bipolar Electrode Array for Optical Reporting Reaction-Coupled Electrochemical Sensing and Imaging. Chemistry 2023; 29:e202202687. [PMID: 36316589 DOI: 10.1002/chem.202202687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
This review centers on a closed bipolar electrode (BPE) array using an electro-fluorochromism (EFC) or electro-chemiluminescence (ECL) reaction as the reporting reaction. Electrochemical signals at one pole of the closed BPE array can be transduced into the EFC or ECL signals at the opposite pole. Therefore, the current signal of a redox reaction can be easily detected and imaged by monitoring the luminescence signal. Recent developments in closed BPE array-based EFC and ECL sensing and imaging are summarized and discussed in detail. Finally, we consider the challenges and opportunities for improving the spatial resolution of closed BPE array-based electrochemical imaging, and emphasize the important application of this technique to the imaging of cellular activities at the single-cell level.
Collapse
Affiliation(s)
- Xiang Qin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jiao Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hua-Jiang Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Fan S, Wang X, Li Y, Chen X, Chen H, Schultz ZD, Li Z. High-Throughput Surface-Enhanced Raman Scattering for Screening Chemical Sensor Candidates Enabled by Bipolar Electrochemistry. ACS Sens 2022; 7:1431-1438. [PMID: 35465660 DOI: 10.1021/acssensors.2c00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A variety of hydrothermal or electrochemical methods have been explored to prepare noble metal nanostructures as surface-enhanced Raman scattering (SERS) substrates. However, most of those metallic nanoarrays are structurally homogeneous, which makes it laborious to select the high-performance substrates for particular Raman sensing purposes. Here, a high-throughput SERS imaging strategy is demonstrated for the first time for screening chemical sensors with sub-nanomolar sensitivities. Bipolar electrochemistry was applied to generate Au or Au-Ag gradient nanoarrays with diverse chemical compositions, morphologies, and particle dimensions ranging from several nanometers to micrometers. The selected "hot-spots" on the Au-Ag alloy nanoarray exhibited a 660-fold enhancement in SERS intensity compared to those on the pure Au gradient nanoarray. The SERS screening of 4-aminothiophenol, 4-nitrothiophenol, and 4-mercaptobenzoic acid was carried out that provided a limit of detection (LOD) between 1 and 5 pM. The distinctive LODs among three thiophenolic Raman probes are ascribed to the differences in the affinity of the probe to the alloy, orientation of the metal-ligand monolayer, or plasmonic environment of the nanoarray surface. As a continuous, rapid, and cost-effective manner to fabricate transitional nanostructures and screen out SERS responsive sites, this method not only facilitates controllable synthesis of noble metal nanoarrays but has the potential to provide an alternative tool for ultrasensitive chemical sensing on a wide range of bimetallic substrates.
Collapse
Affiliation(s)
- Sanjun Fan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Xinyu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yingling Li
- Instrumental Analysis Center of Shenzhen University, Shenzhen University, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaofeng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Haotian Chen
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, Oxford OX1 3QZ, United Kingdom
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
3
|
Visualizing electron transfer at semiconductor–metal interface by surface plasmon resonance imaging. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Masturah binti Fakhruddin S, Ino K, Inoue KY, Nashimoto Y, Shiku H. Bipolar Electrode‐based Electrochromic Devices for Analytical Applications – A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Kosuke Ino
- Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
| | - Kumi Y. Inoue
- Graduate School of Environmental Studies Tohoku University Sendai 980-8579 Japan
- Center for Basic Education Faculty of Engineering Graduate Faculty of Interdisciplinary Research University of Yamanashi Kofu 400-8511 Japan
| | - Yuji Nashimoto
- Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
- Frontier Research Institute for Interdisciplinary Sciences Tohoku University Sendai 980-8578 Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies Tohoku University Sendai 980-8579 Japan
- Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
| |
Collapse
|
5
|
Affiliation(s)
- Kira L. Rahn
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Robbyn K. Anand
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| |
Collapse
|
6
|
Zheng YT, Zhao BS, Zhang HB, Jia H, Wu M. Colorimetric aptasensor for fumonisin B1 detection by regulating the amount of bubbles in closed bipolar platform. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Rahn KL, Rhoades TD, Anand RK. Alternating Current Voltammetry at a Bipolar Electrode with Smartphone Luminescence Imaging for Point‐of‐Need Sensing. ChemElectroChem 2020. [DOI: 10.1002/celc.202000079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kira L. Rahn
- Department of Chemistry Iowa State University 1605 Gilman Hall 2415 Osborn Drive Ames IA 50011-1021 USA
| | - Tyler D. Rhoades
- Department of Chemistry Iowa State University 1605 Gilman Hall 2415 Osborn Drive Ames IA 50011-1021 USA
| | - Robbyn K. Anand
- Department of Chemistry Iowa State University 1605 Gilman Hall 2415 Osborn Drive Ames IA 50011-1021 USA
| |
Collapse
|
8
|
Colorimetric and visual determination of hydrogen peroxide and glucose by applying paper-based closed bipolar electrochemistry. Mikrochim Acta 2019; 186:684. [DOI: 10.1007/s00604-019-3793-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/07/2019] [Indexed: 02/01/2023]
|
9
|
Zhang X, Lazenby RA, Wu Y, White RJ. Electrochromic, Closed-Bipolar Electrodes Employing Aptamer-Based Recognition for Direct Colorimetric Sensing Visualization. Anal Chem 2019; 91:11467-11473. [PMID: 31393110 DOI: 10.1021/acs.analchem.9b03013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this paper, we adapt the electrochemical, aptamer-based (E-AB) sensor platform to develop colorimetric aptamer-based sensors using a closed-bipolar electrode (C-BPE) system. The C-BPE E-AB sensors provide quantitative detection of target molecules based on the rate of color change of an electrochromic Prussian blue (PB) thin-film indicator electrode. The C-BPE cathode, or sensing electrode, is modified with a redox-labeled aptamer that binds to a specific target. More specifically, we employed sequences specific for adenosine triphosphate (ATP) and tobramycin as test-bed targets because these sequences are well vetted. The C-BPE anode, or indicator electrode, was coated with an electrochromic thin film comprising Prussian white (PW) that, when reduced to PB, is accompanied by a corresponding color change used for analytical detection. The rate of color change from PW to PB is facilitated by a potassium ferricyanide-catalyzed oxidation of leucomethylene blue (LB) to methylene blue (MB), the redox label conjugated to the aptamer on the sensing electrode. We demonstrate that the rate of color change is quantitatively related to the concentration of target analyte, which provides a means for naked eye determination. When combined with smartphone-based colorimetric detection, these C-BPE E-AB sensors present a user-friendly alternative to traditional E-AB sensors that rely on voltammetric analysis and a potentiostat, opening up the possibility of point-of-use applications.
Collapse
|
10
|
Fu K, Xu W, Hu J, Lopez A, Bohn PW. Microscale and Nanoscale Electrophotonic Diagnostic Devices. Cold Spring Harb Perspect Med 2019; 9:a034249. [PMID: 30104197 PMCID: PMC6417966 DOI: 10.1101/cshperspect.a034249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Detecting and identifying infectious agents and potential pathogens in complex environments and characterizing their mode of action is a critical need. Traditional diagnostics have targeted a single characteristic (e.g., spectral response, surface receptor, mass, intrinsic conductivity, etc.). However, advances in detection technologies have identified emerging approaches in which multiple modes of action are combined to obtain enhanced performance characteristics. Particularly appealing in this regard, electrophotonic devices capable of coupling light to electron translocation have experienced rapid recent growth and offer significant advantages for diagnostics. In this review, we explore three specific promising approaches that combine electronics and photonics: (1) assays based on closed bipolar electrochemistry coupling electron transfer to color or fluorescence, (2) sensors based on localized surface plasmon resonances, and (3) emerging nanophotonics approaches, such as those based on zero-mode waveguides and metamaterials.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Wei Xu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Jiayun Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Arielle Lopez
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
11
|
Visual Voltammogram at an Array of Closed Bipolar Electrodes in a Ladder Configuration. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00098-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Gao W, Jeanneret S, Yuan D, Cherubini T, Wang L, Xie X, Bakker E. Electrogenerated Chemiluminescence for Chronopotentiometric Sensors. Anal Chem 2019; 91:4889-4895. [PMID: 30835441 DOI: 10.1021/acs.analchem.9b00787] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We introduce here a general strategy to read out chronopotentiometric sensors by electrogenerated chemiluminescence (ECL). The potentials generated in chronopotentiometry in a sample compartment are used to control the ECL in a separate detection compartment. A three-electrode cell is used to monitor the concentration changes of the analyte, while the luminol-H2O2 system is responsible for ECL. The principle was shown to be feasible by theoretical simulations, indicating that the sampled times at a chosen potential, rather than traditional transition times, similarly give linear behavior between concentration and the square root of sampled time. With the help of a voltage adapter, the experimental combination between chronopotentiometry and ECL was successfully implemented. As an initial proof of concept, the ferro/ferricyanide redox couple was investigated. The square root of time giving maximum light output changed linearly with ferrocyanide concentration in the range from 0.70 to 4.81 mM. The method was successfully applied to the visual detection of carbonate alkalinity from 0.06 to 0.62 mM using chronopotentiometry at an ionophore-based hydrogen ion-selective membrane electrode. The measurements of carbonate in real samples including river water and commercial mineral water were successfully demonstrated.
Collapse
Affiliation(s)
- Wenyue Gao
- Department of Inorganic and Analytical Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland.,Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Stéphane Jeanneret
- Department of Inorganic and Analytical Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland
| | - Dajing Yuan
- Department of Inorganic and Analytical Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland
| | - Thomas Cherubini
- Department of Inorganic and Analytical Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland
| | - Lu Wang
- Department of Inorganic and Analytical Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland
| | - Xiaojiang Xie
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland
| |
Collapse
|
13
|
Zhang JD, Hao N, Lu L, Yun S, Zhu XF, Hong K, Feng LD. High-efficient preparation and screening of electrocatalysts using a closed bipolar electrode array system. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Gao J, Chen S, AlTal F, Hu S, Bouffier L, Wantz G. Bipolar Electrode Array Embedded in a Polymer Light-Emitting Electrochemical Cell. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32405-32410. [PMID: 28849645 DOI: 10.1021/acsami.7b11204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A linear array of aluminum discs is deposited between the driving electrodes of an extremely large planar polymer light-emitting electrochemical cell (PLEC). The planar PLEC is then operated at a constant bias voltage of 100 V. This promotes in situ electrochemical doping of the luminescent polymer from both the driving electrodes and the aluminum discs. These aluminum discs function as discrete bipolar electrodes (BPEs) that can drive redox reactions at their extremities. Time-lapse fluorescence imaging reveals that p- and n-doping that originated from neighboring BPEs can interact to form multiple light-emitting p-n junctions in series. This provides direct evidence of the working principle of bulk homojunction PLECs. The propagation of p-doping is faster from the BPEs than from the positive driving electrode due to electric field enhancement at the extremities of BPEs. The effect of field enhancement and the fact that the doping fronts only need to travel the distance between the neighboring BPEs to form a light-emitting junction greatly reduce the response time for electroluminescence in the region containing the BPE array. The near simultaneous formation of multiple light-emitting p-n junctions in series causes a measurable increase in cell current. This indicates that the region containing a BPE is much more conductive than the rest of the planar cell despite the latter's greater width. The p- and n-doping originating from the BPEs is initially highly confined. Significant expansion and divergence of doping occurred when the region containing the BPE array became more conductive. The shape and direction of expanded doping strongly suggest that the multiple light-emitting p-n junctions, formed between and connected by the array of metal BPEs, have functioned as a single rod-shaped BPE. This represents a new type of BPE that is formed in situ and as a combination of metal, doped polymers, and forward-biased p-n junctions connected in series.
Collapse
Affiliation(s)
- Jun Gao
- Department of Physics, Engineering Physics and Astronomy, Queen's University , Kingston, Ontario K7L 3N6, Canada
| | - Shulun Chen
- Department of Physics, Engineering Physics and Astronomy, Queen's University , Kingston, Ontario K7L 3N6, Canada
| | - Faleh AlTal
- Department of Physics, Engineering Physics and Astronomy, Queen's University , Kingston, Ontario K7L 3N6, Canada
| | - Shiyu Hu
- Department of Physics, Engineering Physics and Astronomy, Queen's University , Kingston, Ontario K7L 3N6, Canada
| | - Laurent Bouffier
- Université de Bordeaux, ISM, CNRS, UMR 5255 , Bordeaux INP, F-33400 Talence, France
| | - Guillaume Wantz
- Université de Bordeaux, IMS, CNRS, UMR 5218 , Bordeaux INP, F-33405 Talence, France
| |
Collapse
|
15
|
Zhang X, Zhai Q, Xing H, Li J, Wang E. Bipolar Electrodes with 100% Current Efficiency for Sensors. ACS Sens 2017; 2:320-326. [PMID: 28723210 DOI: 10.1021/acssensors.7b00031] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A bipolar electrode (BPE) is an electron conductor that is embedded in the electrolyte solution without the direct connection with the external power source (driving electrode). When the sufficient voltage was provided, the two poles of BPE promote different oxidation and reduction reactions. During the past few years, BPEs with wireless feature and easy integration showed great promise in the various fields including asymmetric modification/synthesis, motion control, targets enrichment/separation, and chemical sensing/biosensing combined with the quantitative relationship between two poles of BPE. In this perspective paper, we first describe the concept and history of the BPE for analytical chemistry and then review the recent developments in the application of BPEs for sensing with ultrahigh current efficiency (ηc = iBPE/ichannel) including the open and closed bipolar system. Finally, we offer the guide for possible challenge faced and solution in the future.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Qingfeng Zhai
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Huanhuan Xing
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Jing Li
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Erkang Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|
16
|
Qi Z, You S, Ren N. Wireless Electrocoagulation in Water Treatment Based on Bipolar Electrochemistry. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Zhang X, Zhang L, Zhai Q, Gu W, Li J, Wang E. Self-Powered Bipolar Electrochromic Electrode Arrays for Direct Displaying Applications. Anal Chem 2016; 88:2543-7. [DOI: 10.1021/acs.analchem.6b00054] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaowei Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lingling Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qingfeng Zhai
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenling Gu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Li
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Erkang Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Zhai Q, Zhang X, Xia Y, Li J, Wang E. Electrochromic sensing platform based on steric hindrance effects for CEA detection. Analyst 2016; 141:3985-8. [DOI: 10.1039/c6an00675b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this work, an electrochromic sensing platform with prussian blue (PB) as the indicator was proposed for signaling carcinoembryonic antigen (CEA) using the bipolar electrode (BPE) system.
Collapse
Affiliation(s)
- Qingfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Xiaowei Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Yong Xia
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|