1
|
Pan M, Li H, Yang J, Wang Y, Wang Y, Han X, Wang S. Review: Synthesis of metal organic framework-based composites for application as immunosensors in food safety. Anal Chim Acta 2023; 1266:341331. [PMID: 37244661 DOI: 10.1016/j.aca.2023.341331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/29/2023]
Abstract
Ensuring food safety continues to be one of the major global challenges. For effective food safety monitoring, fast, sensitive, portable, and efficient food safety detection strategies must be devised. Metal organic frameworks (MOFs) are porous crystalline materials that have attracted attention for use in high-performance sensors for food safety detection owing to their advantages such as high porosity, large specific surface area, adjustable structure, and easy surface functional modification. Immunoassay strategies based on antigen-antibody specific binding are one of the important means for accurate and rapid detection of trace contaminants in food. Emerging MOFs and their composites with excellent properties are being synthesized, providing new ideas for immunoassays. This article summarizes the synthesis strategies of MOFs and MOF-based composites and their applications in the immunoassays of food contaminants. The challenges and prospects of the preparation and immunoassay applications of MOF-based composites are also presented. The findings of this study will contribute to the development and application of novel MOF-based composites with excellent properties and provide insights into advanced and efficient strategies for developing immunoassays.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yixin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
2
|
Rasheed T, Anwar MT. Metal organic frameworks as self-sacrificing modalities for potential environmental catalysis and energy applications: Challenges and perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Anil Kumar Y, Koyyada G, Ramachandran T, Kim JH, Sajid S, Moniruzzaman M, Alzahmi S, Obaidat IM. Carbon Materials as a Conductive Skeleton for Supercapacitor Electrode Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1049. [PMID: 36985942 PMCID: PMC10057628 DOI: 10.3390/nano13061049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Supercapacitors have become a popular form of energy-storage device in the current energy and environmental landscape, and their performance is heavily reliant on the electrode materials used. Carbon-based electrodes are highly desirable due to their low cost and their abundance in various forms, as well as their ability to easily alter conductivity and surface area. Many studies have been conducted to enhance the performance of carbon-based supercapacitors by utilizing various carbon compounds, including pure carbon nanotubes and multistage carbon nanostructures as electrodes. These studies have examined the characteristics and potential applications of numerous pure carbon nanostructures and scrutinized the use of a wide variety of carbon nanomaterials, such as AC, CNTs, GR, CNCs, and others, to improve capacitance. Ultimately, this study provides a roadmap for producing high-quality supercapacitors using carbon-based electrodes.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Ganesh Koyyada
- Department of Chemical Engineering, Yeungnam University, 214-1 Daehak-ro 280, Gyeongsan 712-749, Gyeongbuk-do, Republic of Korea
| | - Tholkappiyan Ramachandran
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Department of Physics, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Jae Hong Kim
- Department of Chemical Engineering, Yeungnam University, 214-1 Daehak-ro 280, Gyeongsan 712-749, Gyeongbuk-do, Republic of Korea
| | - Sajid Sajid
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Salem Alzahmi
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Ihab M. Obaidat
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Department of Physics, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
4
|
Abuzalat O, Tantawy H, Basuni M, Alkordi MH, Baraka A. Designing bimetallic zeolitic imidazolate frameworks (ZIFs) for aqueous catalysis: Co/Zn-ZIF-8 as a cyclic-durable catalyst for hydrogen peroxide oxidative decomposition of organic dyes in water. RSC Adv 2022; 12:6025-6036. [PMID: 35424567 PMCID: PMC8981819 DOI: 10.1039/d2ra00218c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
ZIF-8 is well known hybrid material that is self-assembled from inorganic and organic moieties. It has several potential applications due to its unique structure. One of these potential applications is in advanced oxidation processes (AOP) via a heterogeneous catalysis system. The use of modified ZIF-8/H2O2 for the destruction of the azo dye methyl orange (MO) is presented in this work to explore its efficacy. This work presents the bimetallic Co/Zn-ZIF-8 as an efficient catalyst to promote H2O2 oxidation of the MO dye. Co/Zn-ZIF-8 was synthesized through a hydrothermal process, and the pristine structure was confirmed using XRD, FTIR, and XPS. The Co/Zn-ZIF-8/H2O2 system successfully decolorized MO at the selected pH 6.5. It was found that more than 90% of MO (10 ppm) was degraded within only about 50 minutes. Proposed radical and redox mechanisms are presented for H2O2 decomposition where the redox mechanism is suggested to predominate via a Co(ii)/Co(iii) redox consecutive cyclic process.
Collapse
Affiliation(s)
- Osama Abuzalat
- Department of Chemical Engineering, Military Technical College Cairo Egypt
| | - Hesham Tantawy
- Department of Chemical Engineering, Military Technical College Cairo Egypt
| | - Mustafa Basuni
- Center for Materials Science, Zewail City of Science and Technology Giza 12578 Egypt
| | - Mohamed H Alkordi
- Center for Materials Science, Zewail City of Science and Technology Giza 12578 Egypt
| | - Ahmad Baraka
- Department of Chemical Engineering, Military Technical College Cairo Egypt
| |
Collapse
|
5
|
Liu S, Zhao Z, Jin L, Sun J, Jiao C, Wang Q. Nitrogen-Doped Carbon Networks with Consecutive Conductive Pathways from a Facile Competitive Carbonization-Etching Strategy for High-Performance Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104375. [PMID: 34677902 DOI: 10.1002/smll.202104375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Recently, new carbonization strategies for synthesizing structure-controlled and high-performance carbon electrode materials have attracted great attentions in the field of energy storage and conversion. Here a competitive carbonization-etching strategy to prepare nitrogen-doped carbon polyhedron@carbon nanosheet (NCP@CNS) hybrids derived from zeolitic imidazolate framework-8 is presented. Consecutive conductive networks are constructed in the NCP@CNS hybrids during a unique carbonization-etching pyrolysis, where a competition between the formation of NCPs and CNSs exists. When the NCP@CNS hybrids are employed as supercapacitor electrodes, their hierarchically porous NCPs serve as ion-buffering reservoirs for offering fast ion transport channels, and the CNSs within hybrids not only link the NCPs together to build electron transfer pathways but also restrict the volume fluctuation of electrodes during charging and discharging process. As a result, the as-fabricated NCP@CNS electrode displays excellent electrochemical performances including a superior specific capacitance of 320 F g-1 , a high energy density of 22.2 W h kg-1 (5.6 W h kg-1 for symmetric device), and a long cycle life with capacitance retention of ≈101.8% after 5000 cycles. This study opens an encouraging avenue toward the tailored synthesis of metal-organic frameworks (MOFs)-derived carbon electrodes for renewable energy storage applications and devices.
Collapse
Affiliation(s)
- Siliang Liu
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui, 230036, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, P. R. China
| | - Zhe Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Li Jin
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201620, P. R. China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Chenlu Jiao
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Qin Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
6
|
Zuo P, Du J, Yu Y, Chen A. N-doped mesoporous thin carbon tubes obtained by exhaust directional deposition for supercapacitor. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Wonanke ADD, Bennett P, Caldwell L, Addicoat MA. Role of Host-Guest Interaction in Understanding Polymerisation in Metal-Organic Frameworks. Front Chem 2021; 9:716294. [PMID: 34368085 PMCID: PMC8333864 DOI: 10.3389/fchem.2021.716294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Metal-organic frameworks, MOFs, offer an effective template for polymerisation of polymers with precisely controlled structures within the sub-nanometre scales. However, synthetic difficulties such as monomer infiltration, detailed understanding of polymerisation mechanisms within the MOF nanochannels and the mechanism for removing the MOF template post polymerisation have prevented wide scale implementation of polymerisation in MOFs. This is partly due to the significant lack in understanding of the energetic and atomic-scale intermolecular interactions between the monomers and the MOFs. Consequently in this study, we explore the interaction of varied concentration of styrene, and 3,4-ethylenedioxythiophene (EDOT), at the surface and in the nanochannel of Zn2(1,4-ndc)2 (dabco), where 1,4-ndc = 1,4-naphthalenedicarboxylate and dabco = 1,4-diazabicyclo[2.2.2]octane. Our results showed that the interactions between monomers are stronger in the nanochannels than at the surfaces of the MOF. Moreover, the MOF-monomer interactions are strongest in the nanochannels and increase with the number of monomers. However, as the number of monomers increases, the monomers turn to bind more strongly at the surface leading to a potential agglomeration of the monomers at the surface.
Collapse
Affiliation(s)
- A D Dinga Wonanke
- Department of Chemistry and Forensics, Nottingham Trent University, Nottingham, United Kingdom
| | - Poppy Bennett
- Department of Chemistry and Forensics, Nottingham Trent University, Nottingham, United Kingdom
| | - Lewis Caldwell
- Department of Chemistry and Forensics, Nottingham Trent University, Nottingham, United Kingdom
| | - Matthew A Addicoat
- Department of Chemistry and Forensics, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
8
|
Song X, Jiang Y, Cheng F, Earnshaw J, Na J, Li X, Yamauchi Y. Hollow Carbon-Based Nanoarchitectures Based on ZIF: Inward/Outward Contraction Mechanism and Beyond. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004142. [PMID: 33326182 DOI: 10.1002/smll.202004142] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/15/2020] [Indexed: 05/04/2023]
Abstract
Hollow carbon-based nanoarchitectures (HCAs) derived from zeolitic imidazolate frameworks (ZIFs), by virtue of their controllable morphology and dimension, high specific surface area and nitrogen content, richness of metal/metal compounds active sites, and hierarchical pore structure and easy exposure of active sites, have attracted great interests in many fields of applications, especially in heterogeneous catalysis, and electrochemical energy storage and conversion. Despite various approaches that have been developed to prepare ZIF-derived HCAs, the hollowing mechanism has not been clearly disclosed. Herein, a specialized overview of the recent progress of ZIF-derived HCAs is introduced to provide an insight into their preparation strategy and the corresponding hollowing mechanisms. Based on the fundamental understanding of the structural evolution of ZIF nanocrystals during the high-temperature pyrolysis process, the hollowing mechanisms of ZIF-derived HCAs are classified into four categories: i) inward contraction of core-shell template@ZIF composites or hollow ZIFs, ii) outward contraction of ZIF@shell composites, iii) special outward contraction of ZIF arrays, and iv) mechanism beyond inward/outward contraction of pure ZIF nanocrystals. Finally, an outlook on the development prospects and challenges of HCAs based on ZIF precursors, especially in terms of controlled synthesis and future electrochemical application, is further discussed.
Collapse
Affiliation(s)
- Xiaokai Song
- School of Chemical & Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Yu Jiang
- School of Chemical & Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Fang Cheng
- School of Chemical & Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Jacob Earnshaw
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jongbeom Na
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, No. 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| |
Collapse
|
9
|
Chang Z, Qiao Y, Yang H, Deng H, Zhu X, He P, Zhou H. Applications of Metal-organic Frameworks (MOFs) Materials in Lithium-ion Battery/Lithium-metal Battery Electrolytes. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20090442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Yang J, Wang Y, Pan M, Xie X, Liu K, Hong L, Wang S. Synthesis of Magnetic Metal-Organic Frame Material and Its Application in Food Sample Preparation. Foods 2020; 9:E1610. [PMID: 33172006 PMCID: PMC7694616 DOI: 10.3390/foods9111610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
A variety of contaminants in food is an important aspect affecting food safety. Due to the presence of its trace amounts and the complexity of food matrix, it is very difficult to effectively separate and accurately detect them. The magnetic metal-organic framework (MMOF) composites with different structures and functions provide a new choice for the purification of food matrix and enrichment of trace targets, thus providing a new direction for the development of new technologies in food safety detection with high sensitivity and efficiency. The MOF materials composed of inorganic subunits and organic ligands have the advantages of regular pore structure, large specific surface area and good stability, which have been thoroughly studied in the pretreatment of complex food samples. MMOF materials combined different MOF materials with various magnetic nanoparticles, adding magnetic characteristics to the advantages of MOF materials, which are in terms of material selectivity, biocompatibility, easy operation and repeatability. Combined with solid phase extraction (SPE) technique, MMOF materials have been widely used in the food pretreatment. This article introduced the new preparation strategies of different MMOF materials, systematically summarizes their applications as SPE adsorbents in the pretreatment of food contaminants and analyzes and prospects their future application prospects and development directions.
Collapse
Affiliation(s)
- Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yabin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
11
|
Wang J, Chang Z, Ding B, Li T, Yang G, Pang Z, Nakato T, Eguchi M, Kang Y, Na J, Guan BY, Yamauchi Y. Universal Access to Two‐Dimensional Mesoporous Heterostructures by Micelle‐Directed Interfacial Assembly. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jie Wang
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Zhi Chang
- Energy Technology Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono Tsukuba 305-8568 Japan
| | - Bing Ding
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Jiangsu Key Laboratory of Electrochemical Energy-Storage, Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Tao Li
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Gaoliang Yang
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Zhibin Pang
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education Ocean University of China Qingdao 266100 China
| | - Teruyuki Nakato
- Department of Applied Chemistry, Strategic Research Unit for Innovative Multiscale Materials Kyushu Institute of Technology 1-1 Sensui-cho, Tobata Kitakyushu Fukuoka 804-8550 Japan
| | - Miharu Eguchi
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- School of Chemical Engineering and Australian Institute for, Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Yong‐Mook Kang
- Department of Materials Science and Engineering Korea University Seoul 02841 Republic of Korea
| | - Jongbeom Na
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- School of Chemical Engineering and Australian Institute for, Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Bu Yuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
- Joint Research Center for Future Materials International Center of Future Science Jilin University Qianjin Street 2699 Changchun 130012 China
| | - Yusuke Yamauchi
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- School of Chemical Engineering and Australian Institute for, Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
- Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education Ocean University of China Qingdao 266100 China
- Department of Plant and Environmental New Resources Kyung Hee University 1732 Deogyeong-daero, Giheung-gu, Yongin-si Gyeonggi-do 446-01 South Korea
| |
Collapse
|
12
|
Wang J, Chang Z, Ding B, Li T, Yang G, Pang Z, Nakato T, Eguchi M, Kang Y, Na J, Guan BY, Yamauchi Y. Universal Access to Two‐Dimensional Mesoporous Heterostructures by Micelle‐Directed Interfacial Assembly. Angew Chem Int Ed Engl 2020; 59:19570-19575. [DOI: 10.1002/anie.202007063] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Wang
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Zhi Chang
- Energy Technology Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono Tsukuba 305-8568 Japan
| | - Bing Ding
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Jiangsu Key Laboratory of Electrochemical Energy-Storage, Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Tao Li
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Gaoliang Yang
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Zhibin Pang
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education Ocean University of China Qingdao 266100 China
| | - Teruyuki Nakato
- Department of Applied Chemistry, Strategic Research Unit for Innovative Multiscale Materials Kyushu Institute of Technology 1-1 Sensui-cho, Tobata Kitakyushu Fukuoka 804-8550 Japan
| | - Miharu Eguchi
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- School of Chemical Engineering and Australian Institute for, Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Yong‐Mook Kang
- Department of Materials Science and Engineering Korea University Seoul 02841 Republic of Korea
| | - Jongbeom Na
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- School of Chemical Engineering and Australian Institute for, Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Bu Yuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
- Joint Research Center for Future Materials International Center of Future Science Jilin University Qianjin Street 2699 Changchun 130012 China
| | - Yusuke Yamauchi
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- School of Chemical Engineering and Australian Institute for, Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
- Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education Ocean University of China Qingdao 266100 China
- Department of Plant and Environmental New Resources Kyung Hee University 1732 Deogyeong-daero, Giheung-gu, Yongin-si Gyeonggi-do 446-01 South Korea
| |
Collapse
|
13
|
Wang J, Wang Y, Hu H, Yang Q, Cai J. From metal-organic frameworks to porous carbon materials: recent progress and prospects from energy and environmental perspectives. NANOSCALE 2020; 12:4238-4268. [PMID: 32039421 DOI: 10.1039/c9nr09697c] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising materials in the areas of gas storage, magnetism, luminescence, and catalysis owing to their superior property of having highly crystalline structures. However, MOF stability toward heat or humidity is considerably less as compared to carbons because they are constructed from the assembly of ligands with metal ions or clusters via coordination bonds. Transforming MOFs into carbons is bringing the novel potential for MOFs to achieve industrialization, and carbons with controlled pore sizes and surface doping are one of the most important porous materials. By selecting MOFs as a precursor or template, carbons with heteroatom doping and well-developed pores can be achieved. In this review, we discussed the state-of-art study progress made in the new development of MOF-derived metal-free porous carbons. In particular, the potential use of metal-free carbons from environmental and energy perspectives, such as adsorption, supercapacitors, and catalysts, were analyzed in detail. Moreover, an outlook for the sustainable development of MOF-derived porous carbons in the future was also presented.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Yuelin Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Hongbo Hu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Qipeng Yang
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Jinjun Cai
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China. and School of Engineering Materials & Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
14
|
Hwang J, Ejsmont A, Freund R, Goscianska J, Schmidt BVKJ, Wuttke S. Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chem Soc Rev 2020; 49:3348-3422. [DOI: 10.1039/c9cs00871c] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We give a comprehensive overview of how the morphology control is an effective and versatile way to control the physicochemical properties of metal oxides that can be transferred to metal–organic frameworks and porous carbon materials.
Collapse
Affiliation(s)
- Jongkook Hwang
- Inorganic Chemistry and Catalysis
- Utrecht University
- Utrecht
- The Netherlands
| | - Aleksander Ejsmont
- Adam Mickiewicz University in Poznań
- Faculty of Chemistry
- 61-614 Poznań
- Poland
| | - Ralph Freund
- Chair of Solid State and Materials Chemistry
- Institute of Physics
- University of Augsburg
- 86159 Augsburg
- Germany
| | - Joanna Goscianska
- Adam Mickiewicz University in Poznań
- Faculty of Chemistry
- 61-614 Poznań
- Poland
| | | | - Stefan Wuttke
- BCMaterials
- Basque Center for Materials
- UPV/EHU Science Park
- 48940 Leioa
- Spain
| |
Collapse
|
15
|
Adsorption dynamics and mechanism of Amoxicillin and Sulfachlorpyridazine by ZrOx/porous carbon nanocomposites. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Vu TT, La TV, Tran NK, Huynh DC. A comprehensive review on the sacrificial template-accelerated hydrolysis synthesis method for the fabrication of supported nanomaterials. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01764-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Cui L, Hu J, Li CC, Wang CM, Zhang CY. An electrochemical biosensor based on the enhanced quasi-reversible redox signal of prussian blue generated by self-sacrificial label of iron metal-organic framework. Biosens Bioelectron 2018; 122:168-174. [DOI: 10.1016/j.bios.2018.09.061] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 11/25/2022]
|
18
|
Zhong Y, Xu X, Liu Y, Wang W, Shao Z. Recent progress in metal–organic frameworks for lithium–sulfur batteries. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.08.067] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Salazar-Beltrán D, Cabello CP, Guzmán-Mar JL, Hinojosa-Reyes L, Palomino GT, Maya F. Nanoparticle@Metal-Organic Frameworks as a Template for Hierarchical Porous Carbon Sponges. Chemistry 2018; 24:13450-13456. [DOI: 10.1002/chem.201802545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Daniel Salazar-Beltrán
- Department of Chemistry; University of the Balearic Islands; Cra. Valldemossa km 7.5 Palma de Mallorca 07122 Spain
- Faculty of Chemical Sciences; Universidad Autónoma de Nuevo León; Cd. Universitaria San Nicolás de los Garza, Nuevo León C.P. 66455 Mexico
| | - Carlos Palomino Cabello
- Department of Chemistry; University of the Balearic Islands; Cra. Valldemossa km 7.5 Palma de Mallorca 07122 Spain
| | - Jorge Luis Guzmán-Mar
- Faculty of Chemical Sciences; Universidad Autónoma de Nuevo León; Cd. Universitaria San Nicolás de los Garza, Nuevo León C.P. 66455 Mexico
| | - Laura Hinojosa-Reyes
- Faculty of Chemical Sciences; Universidad Autónoma de Nuevo León; Cd. Universitaria San Nicolás de los Garza, Nuevo León C.P. 66455 Mexico
| | - Gemma Turnes Palomino
- Department of Chemistry; University of the Balearic Islands; Cra. Valldemossa km 7.5 Palma de Mallorca 07122 Spain
| | - Fernando Maya
- Department of Chemistry; University of the Balearic Islands; Cra. Valldemossa km 7.5 Palma de Mallorca 07122 Spain
| |
Collapse
|
20
|
Deka N, Deka J, Dutta GK. Nitrogen-Doped Porous Carbon Derived from Carbazole-Substituted Tetraphenylethylene-Based Hypercrosslinked Polymer for High-Performance Supercapacitor. ChemistrySelect 2018. [DOI: 10.1002/slct.201801507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Namrata Deka
- Department of Chemistry; National Institute of Technology Meghalaya; Bijni Complex, Laitumkhrah; Shillong-793003, Meghalaya India
| | - Jumi Deka
- Department of Chemistry; Indian Institute of Technology Guwahati, Amingaon, North Guwahati; Guwahati-781039, Assam India
| | - Gitish K. Dutta
- Department of Chemistry; National Institute of Technology Meghalaya; Bijni Complex, Laitumkhrah; Shillong-793003, Meghalaya India
| |
Collapse
|
21
|
Feng Y, Cao M, Yang L, Zhang XF, Wang Y, Yu D, Gu X, Yao J. Bilayer N-doped carbon derived from furfuryl alcohol-wrapped melamine sponge as high-performance supercapacitor. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Wang J, Tang J, Ding B, Chang Z, Hao X, Takei T, Kobayashi N, Bando Y, Zhang X, Yamauchi Y. Self-Template-Directed Metal-Organic Frameworks Network and the Derived Honeycomb-Like Carbon Flakes via Confinement Pyrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704461. [PMID: 29450977 DOI: 10.1002/smll.201704461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 06/08/2023]
Abstract
Metal-organic frameworks (MOFs) have become a research hotspot since they have been explored as convenient precursors for preparing various multifunctional nanomaterials. However, the preparation of MOF networks with controllable flake morphology in large scale is not realized yet. Herein, a self-template strategy is developed to prepare MOF networks. In this work, layered double-metal hydroxide (LDH) and other layered metal hydroxides are used not only as a scaffold but also as a self-sacrificed metal source. After capturing the abundant metal cations identically from the LDH by the organic linkers, MOF networks are in situ formed. It is interesting that the MOF network-derived carbon materials retain the flake morphology and exhibit a unique honeycomb-like macroporous structure due to the confined shrinkage of the polyhedral facets. The overall properties of the carbon networks are adjustable according to the tailored metal compositions in LDH and the derived MOFs, which are desirable for target-oriented applications as exemplified by the electrochemical application in supercapacitors.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Materials and Technologies for Energy Conversion, College of Materials Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jing Tang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Bing Ding
- Key Laboratory of Materials and Technologies for Energy Conversion, College of Materials Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Zhi Chang
- Key Laboratory of Materials and Technologies for Energy Conversion, College of Materials Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Xiaodong Hao
- Key Laboratory of Materials and Technologies for Energy Conversion, College of Materials Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Toshiaki Takei
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Naoya Kobayashi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yoshio Bando
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Xiaogang Zhang
- Key Laboratory of Materials and Technologies for Energy Conversion, College of Materials Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yusuke Yamauchi
- School of Chemical Engineering & Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheunggu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| |
Collapse
|
23
|
Chang Z, Ding B, Dou H, Wang J, Xu G, Zhang X. Hierarchically Porous Multilayered Carbon Barriers for High-Performance Li-S Batteries. Chemistry 2018; 24:3768-3775. [PMID: 29315950 DOI: 10.1002/chem.201704757] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Indexed: 01/08/2023]
Abstract
As one of the most promising energy storage devices, the practical application of lithium-sulfur batteries is limited by the low electrical conductivity of sulfur and the notable "shuttle effects" of sulfur-based electrodes. In this work, we describe a hierarchically porous N-doped zeolitic imidazolate framework-8 (ZIF-8)-derived carbon nanosphere (N-ZDC) with an outer shell and an inner honeycomb-like interconnected nanosheet network as sulfur host material for high-performance and long-term lithium-sulfur batteries. The N-ZDC serves as multilayered barrier against the dissolution of lithium polysulfides. The porously inner interconnected carbon network of the N-ZDC facilitates the electron and ion transportation, ensures a high sulfur loading, and accommodates a volume expansion of the sulfur species. As a result, the optimized N-ZDC4 /S electrodes displayed high initial specific capacities of 1343, 1182, and 698 mAh g-1 at 0.5, 1, and 2 C, respectively, and an ultraslow capacity decay of only 0.048 % per cycle at 2 C over 800 cycles. Even with a high sulfur loading of 3.1 mg cm-2 , N-ZDC4 /S still delivered a reversible capacity of 956 mAh g-1 and stabilizes at 544 mAh g-1 after 500 cycles at 0.5 C, revealing the great potential of the novel carbon nanospheres for energy storage application.
Collapse
Affiliation(s)
- Zhi Chang
- Jiangsu Key Laboratory of Material and Technology, for Energy Conversion, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| | - Bing Ding
- Jiangsu Key Laboratory of Material and Technology, for Energy Conversion, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| | - Hui Dou
- Jiangsu Key Laboratory of Material and Technology, for Energy Conversion, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| | - Jie Wang
- Jiangsu Key Laboratory of Material and Technology, for Energy Conversion, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| | - Guiyin Xu
- Jiangsu Key Laboratory of Material and Technology, for Energy Conversion, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Material and Technology, for Energy Conversion, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| |
Collapse
|