1
|
Mohammed M, Jones BA, Liarou E, Wilson P. Localised polymerisation of acrylamide using single-barrel scanning electrochemical cell microscopy. Chem Commun (Camb) 2023; 59:10992-10995. [PMID: 37622460 DOI: 10.1039/d3cc03582d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Single-barrel scanning electrochemical cell microscopy has been adapted for polymerisation of acrylamide in droplet cells formed at gold electrode surfaces. Localised electrochemical atom transfer radical polymerisation enables controlled synthesis and deposition of polyacrylamide or synthesis of polyacrylamide brushes from initiator-functionalised electrode surfaces.
Collapse
Affiliation(s)
- Mahir Mohammed
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Bryn A Jones
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Evelina Liarou
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Paul Wilson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
2
|
Yang R, Kvetny M, Brown W, Ogbonna EN, Wang G. A Single-Entity Method for Actively Controlled Nucleation and High-Quality Protein Crystal Synthesis. Anal Chem 2023. [PMID: 37243709 DOI: 10.1021/acs.analchem.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Lack of controls and understanding in nucleation, which proceeds crystal growth and other phase transitions, has been a bottleneck challenge in chemistry, materials, biology, and other fields. The exemplary needs for better methods for biomacromolecule crystallization include (1) synthesizing crystals for high-resolution structure determinations in fundamental research and (2) tuning the crystal habit and thus the corresponding properties in materials and pharmaceutical applications. Herein, a deterministic method is established capable of sustaining the nucleation and growth of a single crystal using the protein lysozyme as a prototype. The supersaturation is localized at the interface between a sample and a precipitant solution, spatially confined by the tip of a single nanopipette. The exchange of matter between the two solutions determines the supersaturation, which is controlled by electrokinetic ion transport driven by an external potential waveform. Nucleation and subsequent crystal growth disrupt the ionic current limited by the nanotip and are detected. The nucleation and growth of individual single crystals are measured in real time. Electroanalytical and optical signatures are elucidated as feedbacks with which active controls in crystal quality and method consistency are achieved: five out of five crystals diffract at a true atomic resolution of up to 1.2 Å. As controls, those synthesized under less optimized conditions diffract poorly. The crystal habits during the growth process are tuned successfully by adjusting the flux. The universal mechanism of nano-transport kinetics, together with the correlations of the diffraction quality and crystal habit with the crystallization control parameters, lay the foundation for the generalization to other materials systems.
Collapse
Affiliation(s)
- Ruoyu Yang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Maksim Kvetny
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Warren Brown
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Edwin N Ogbonna
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
3
|
McPherson IJ, Brown P, Meloni GN, Unwin PR. Visualization of Ion Fluxes in Nanopipettes: Detection and Analysis of Electro-osmosis of the Second Kind. Anal Chem 2021; 93:16302-16307. [PMID: 34846865 DOI: 10.1021/acs.analchem.1c02371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanopipettes are finding increasing use as nano "test tubes", with reactions triggered through application of an electrochemical potential between electrodes in the nanopipette and a bathing solution (bath). Key to this application is an understanding of how the applied potential induces mixing of the reagents from the nanopipette and the bath. Here, we demonstrate a laser scanning confocal microscope (LSCM) approach to tracking the ingress of dye into a nanopipette (20-50 nm diameter end opening). We examine the case of dianionic fluorescein under alkaline conditions (pH 11) and large applied tip potentials (±10 V), with respect to the bath, and surprisingly find that dye ingress from the bath into the nanopipette is not observed under either sign of potential. Finite element method (FEM) simulations indicate this is due to the dominance of electro-osmosis in mass transport, with electro-osmotic flow in the conventional direction at +10 V and electro-osmosis of the second kind acting in the same direction at -10 V, caused by the formation of significant space charge in the center of the orifice. The results highlight the significant deviation in mass transport behavior that emerges at the nanoscale and the utility of the combined LSCM and FEM approach in deepening understanding, which in turn should promote new applications of nanopipettes.
Collapse
Affiliation(s)
- Ian J McPherson
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Peter Brown
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
4
|
Morris PD, McPherson IJ, Edwards MA, Kashtiban RJ, Walton RI, Unwin PR. Electric Field-Controlled Synthesis and Characterisation of Single Metal-Organic-Framework (MOF) Nanoparticles. Angew Chem Int Ed Engl 2020; 59:19696-19701. [PMID: 32633454 PMCID: PMC7693291 DOI: 10.1002/anie.202007146] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Indexed: 12/21/2022]
Abstract
Achieving control over the size distribution of metal-organic-framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST-1, is achieved using a nanopipette injection method to locally mix Cu2+ salt precursor and benzene-1,3,5-tricarboxylate (BTC3- ) ligand reagents, to form MOF nanocrystals, and collect and characterise them on a TEM grid. In situ analysis of the size and translocation frequency of HKUST-1 nanoparticles is demonstrated, using the nanopipette to detect resistive pulses as nanoparticles form. Complementary modelling of mass transport in the electric field, enables particle size to be estimated and explains the feasibility of particular reaction conditions, including inhibitory effects of excess BTC3- . These new methods should be applicable to a variety of MOFs, and scaling up synthesis possible via arrays of nanoscale reaction centres, for example using nanopore membranes.
Collapse
Affiliation(s)
- Peter D Morris
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Ian J McPherson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Martin A Edwards
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Reza J Kashtiban
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Richard I Walton
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
5
|
Morris PD, McPherson IJ, Meloni GN, Unwin PR. Nanoscale kinetics of amorphous calcium carbonate precipitation in H 2O and D 2O. Phys Chem Chem Phys 2020; 22:22107-22115. [PMID: 32990693 DOI: 10.1039/d0cp03032e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcium carbonate (CaCO3) is one of the most well-studied and abundant natural materials on Earth. Crystallisation of CaCO3 is often observed to proceed via an amorphous calcium carbonate (ACC) phase, as a precursor to more stable crystalline polymorphs such as vaterite and calcite. Despite its importance, the kinetics of ACC formation have proved difficult to study, in part due to rapid precipitation at moderate supersaturations, and the instability of ACC with respect to all other polymorphs. However, ACC can be stabilised under confinement conditions, such as those provided by a nanopipette. This paper demonstrates electrochemical mixing of a Ca2+ salt (CaCl2) and a HCO3- salt (NaHCO3) in a nanopipette to repeatedly and reversibly precipitate nanoparticles of ACC under confined conditions, as confirmed by scanning transmission electron microscopy (STEM). Measuring the current as a function of applied potential across the end of the nanopipette and time provides millisecond-resolved measurements of the induction time for ACC precipitation. We demonstrate that under conditions of electrochemical mixing, ACC precipitation is extremely fast, and highly pH sensitive with an apparent third order dependence on CO32- concentration. Furthermore, the rate is very similar for the equivalent CO32- concentrations in D2O, suggesting that neither ion dehydration nor HCO3- deprotonation represent significant energetic barriers to the formation of ACC. Finite element method simulations of the electrochemical mixing process enable the supersaturation to be estimated for all conditions and accurately predict the location of precipitation.
Collapse
Affiliation(s)
- Peter D Morris
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | | | | |
Collapse
|
6
|
Morris PD, McPherson IJ, Edwards MA, Kashtiban RJ, Walton RI, Unwin PR. Electric Field‐Controlled Synthesis and Characterisation of Single Metal–Organic‐Framework (MOF) Nanoparticles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peter D. Morris
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Ian J. McPherson
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Martin A. Edwards
- Department of Chemistry University of Utah Salt Lake City UT 84112 USA
| | - Reza J. Kashtiban
- Department of Physics University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Richard I. Walton
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Patrick R. Unwin
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
7
|
Page A, Perry D, Unwin PR. Multifunctional scanning ion conductance microscopy. Proc Math Phys Eng Sci 2017; 473:20160889. [PMID: 28484332 PMCID: PMC5415692 DOI: 10.1098/rspa.2016.0889] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential-time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science.
Collapse
Affiliation(s)
- Ashley Page
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - David Perry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Patrick R. Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|