Yan X, Xin L, Wang H, Cao C, Sun S. Synergetic effect of Na-doping and carbon coating on the electrochemical performances of Li
3-x Na
x V
2(PO
4)
3/C as cathode for lithium-ion batteries.
RSC Adv 2019;
9:8222-8229. [PMID:
35518666 PMCID:
PMC9061584 DOI:
10.1039/c8ra10646k]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/28/2019] [Indexed: 11/21/2022] Open
Abstract
Carbon coated Li3-x Na x V2(PO4)3/C (x = 0.04, 0.06, 0.10, 0.12, 0.18) cathode materials for lithium-ion batteries were synthesized via a simple carbothermal reduction reaction route using methyl orange as the reducing agent, which also acted as the Na and carbon sources. The influence of various Na-doping levels on the structure and electrochemical performance of the Li3-x Na x V2(PO4)3/C composites was investigated. The valence state of vanadium, the form of residual carbon and the overall morphology of the Li2.90Na0.10V2(PO4)3/C, which showed the highest initial specific discharge capacity of 128 mA h g-1 at the current density of 0.1C (1C = 132 mA g-1) among this series of composites, were further examined by X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy and high-resolution transmission electron microscopy, respectively. The results indicated that a well crystallized structure of Na-doped Li2.90Na0.10V2(PO4)3 coated by a carbon matrix is obtained. In the further electrochemical measurements, the Li2.90Na0.10V2(PO4)3/C cathode material shows superior discharge capacities of 124, 118, 113, 106 and 98 mA h g-1 at 0.3, 0.5, 1, 2 and 5C, respectively. High capacity retention of 97% was obtained after 1100 cycles in long-term cyclic performance tests at 5C. The reason for such a promising electrochemical performance of the as-prepared Li2.90Na0.10V2(PO4)3/C has also been explored, which revealed that the synergetic effect of the Na-doping and carbon coating provide enlarged Li+ diffusion channels and the increased electronic conductivity.
Collapse