1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Hongrutai N, Watmanee S, Pinthong P, Panpranot J. Electrochemical reduction of carbon dioxide on the oxide-containing electrocatalysts. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Sun X, Shao X, Yi J, Zhang J, Liu Y. High-efficient carbon dioxide-to-formic acid conversion on bimetallic PbIn alloy catalysts with tuned composition and morphology. CHEMOSPHERE 2022; 293:133595. [PMID: 35031250 DOI: 10.1016/j.chemosphere.2022.133595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/05/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
CO2 electroreduction to value-added chemicals and fuels has gained increasing attention; however, there are only a few catalysts with high performance under mild conditions that can be used in this technique. In this study, single metal Pb, In and bimetallic PbIn catalysts for aqueous CO2 electroreduction were prepared using a facile 3-step process including PbIn granulation by reducing Pb(NO3)2/In(NO3)3 aqueous solution with NaBH4, calcination in air, and in situ electroreduction. The bimetallic PbIn catalysts had better catalytic performance on CO2 electroreduction than single metal catalysts. The bimetallic Pb7In3 catalyst (atomic ratios of Pb and In is 7:3) presented the highest formic acid faradaic efficiency of 91.6% at -1.26 V vs reversible hydrogen electrode in a 0.5 M CO2-saturated KHCO3 aqueous solution, which was 13% and 9.7% higher than that of single Pb and In catalysts, respectively. Moreover, the catalyst remained active after 10 h of continuous CO2 electrolysis with a stale current density of -17 mA cm-2. The experimental results showed that the excellent catalytic performance of Pb7In3 catalyst may stem from its higher electrochemical active surface area, lower charge-transfer resistance and the synergistic effect of Pb and In in the catalyst. The presented bimetallic PbIn catalysts may have a wide of application prospect, and they may be synthesized from heavy metals in industrial wastewaters.
Collapse
Affiliation(s)
- Xueliang Sun
- Department of Chemistry/Institute for Sustainable Energy, College of Sciences, Shanghai University, Shangda Road 99, Baoshan, Shanghai, 200444, China
| | - Xiaolin Shao
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shangda Road 99, Baoshan, Shanghai, 200444, China
| | - Jin Yi
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shangda Road 99, Baoshan, Shanghai, 200444, China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shangda Road 99, Baoshan, Shanghai, 200444, China
| | - Yuyu Liu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shangda Road 99, Baoshan, Shanghai, 200444, China.
| |
Collapse
|
4
|
Quantifying the electrochemical active site density of precious metal-free catalysts in situ in fuel cells. Nat Catal 2022. [DOI: 10.1038/s41929-022-00748-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Lu H, Tournet J, Dastafkan K, Liu Y, Ng YH, Karuturi SK, Zhao C, Yin Z. Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chem Rev 2021; 121:10271-10366. [PMID: 34228446 DOI: 10.1021/acs.chemrev.0c01328] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Global energy and environmental crises are among the most pressing challenges facing humankind. To overcome these challenges, recent years have seen an upsurge of interest in the development and production of renewable chemical fuels as alternatives to the nonrenewable and high-polluting fossil fuels. Photocatalysis, photoelectrocatalysis, and electrocatalysis provide promising avenues for sustainable energy conversion. Single- and dual-component catalytic systems based on nanomaterials have been intensively studied for decades, but their intrinsic weaknesses hamper their practical applications. Multicomponent nanomaterial-based systems, consisting of three or more components with at least one component in the nanoscale, have recently emerged. The multiple components are integrated together to create synergistic effects and hence overcome the limitation for outperformance. Such higher-efficiency systems based on nanomaterials will potentially bring an additional benefit in balance-of-system costs if they exclude the use of noble metals, considering the expense and sustainability. It is therefore timely to review the research in this field, providing guidance in the development of noble-metal-free multicomponent nanointegration for sustainable energy conversion. In this work, we first recall the fundamentals of catalysis by nanomaterials, multicomponent nanointegration, and reactor configuration for water splitting, CO2 reduction, and N2 reduction. We then systematically review and discuss recent advances in multicomponent-based photocatalytic, photoelectrochemical, and electrochemical systems based on nanomaterials. On the basis of these systems, we further laterally evaluate different multicomponent integration strategies and highlight their impacts on catalytic activity, performance stability, and product selectivity. Finally, we provide conclusions and future prospects for multicomponent nanointegration. This work offers comprehensive insights into the development of cost-competitive multicomponent nanomaterial-based systems for sustainable energy-conversion technologies and assists researchers working toward addressing the global challenges in energy and the environment.
Collapse
Affiliation(s)
- Haijiao Lu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Julie Tournet
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siva Krishna Karuturi
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
6
|
Tian Y, Li D, Wu J, Liu J, Li C, Liu G, Chen D, Feng Y. Electroreduction of CO2 to formate with excellent selectivity and stability on nano-dendrite Bi film electrode. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Huang X, Song J, Wu H, Xie C, Hua M, Hu Y, Han B. Ordered-Mesoporous-Carbon-Confined Pb/PbO Composites: Superior Electrocatalysts for CO 2 Reduction. CHEMSUSCHEM 2020; 13:6346-6352. [PMID: 32166869 DOI: 10.1002/cssc.202000329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/01/2020] [Indexed: 05/03/2023]
Abstract
CO2 electroreduction has gained significant interest. However, fabricating cost-effective nonprecious-metal electrocatalysts that can selectively convert CO2 to a specific product remains highly challenging. Herein, Pb-based materials consisting of Pb0 and PbO confined in ordered mesoporous carbon (OMC) (Pb/PbO@OMC) were constructed for CO2 electroreduction to CO. Interestingly, the activity and selectivity of the Pb/PbO@OMC varied with the molar ratio of Pb0 /PbO. The material calcined at 800 °C (Pb/PbO@OMC-800) with a Pb0 /PbO ratio of 0.58 provided the best result with CO as the only carbon-based product, and the Faradaic efficiency of CO reached 98.3 % at a high current density of 41.3 mA cm-2 . Detailed studies indicated that Pb0 , PbO, and OMC co-operated well to enhance the performance of Pb/PbO@OMC-800, which mainly originated from the good interface between Pb0 and PbO, higher electrochemical active surface area, and faster electron transfer to form the CO2 ⋅- intermediate.
Collapse
Affiliation(s)
- Xin Huang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jinliang Song
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Haoran Wu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Chao Xie
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Manli Hua
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yue Hu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
8
|
García J, Jiménez C, Martínez F, Camarillo R, Rincón J. Electrochemical reduction of CO2 using Pb catalysts synthesized in supercritical medium. J Catal 2018. [DOI: 10.1016/j.jcat.2018.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Bentley CL, Bond AM, Zhang J. Voltammetric Perspectives on the Acidity Scale and H +/H 2 Process in Ionic Liquid Media. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:397-419. [PMID: 29553798 DOI: 10.1146/annurev-anchem-061417-010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nonhaloaluminate ionic liquids (ILs) have received considerable attention as alternatives to molecular solvents in diverse applications spanning the fields of physical, chemical, and biological science. One important and often overlooked aspect of the implementation of these designer solvents is how the properties of the IL formulation affect (electro)chemical reactivity. This aspect is emphasized herein, where recent (voltammetric) studies on the energetics of proton (H+) transfer and electrode reaction mechanisms of the H+/H2 process in IL media are highlighted and discussed. The energetics of proton transfer, quantified using the p Ka (minus logarithm of acidity equilibrium constant, Ka) formalism, is strongly governed by the constituent IL anion, and to a lesser extent, the IL cation. The H+/H2 process, a model inner-sphere reaction, also displays electrochemical characteristics that are strongly IL-dependent. Overall, these studies highlight the need to carry out systematic investigations to resolve IL structure and function relationships in order to realize the potential of these diverse and versatile solvents.
Collapse
Affiliation(s)
- Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom;
| | - Alan M Bond
- School of Chemistry and Australian Research Council Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia; ,
| | - Jie Zhang
- School of Chemistry and Australian Research Council Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia; ,
| |
Collapse
|
10
|
Li F, MacFarlane DR, Zhang J. Recent advances in the nanoengineering of electrocatalysts for CO 2 reduction. NANOSCALE 2018; 10:6235-6260. [PMID: 29569672 DOI: 10.1039/c7nr09620h] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Emissions of CO2 from fossil fuel combustion and industrial processes have been regarded as the dominant cause of global warming. Electrochemical CO2 reduction (ECR), ideally in aqueous media, could potentially solve this problem by the storage of energy from renewable sources in the form of chemical energy in fuels or value-added chemicals in a sustainable manner. However, because of the sluggish reaction kinetics of the ECR, efficient, selective, and durable electrocatalysts are required to increase the rate this reaction. Despite considerable progress in using bulk metallic electrodes for catalyzing the ECR, greater efforts are still needed to tackle this grand challenge. In this Review, we highlight recent progress in using nanoengineering strategies to promote the electrocatalysts for the ECR. Through these approaches, considerable improvements in catalytic performance have been achieved. An outlook of future developments in applying and optimizing these strategies is also proposed.
Collapse
Affiliation(s)
- Fengwang Li
- ARC Centre of Excellence for Electromaterials Science, School of Chemistry, Monash University, Victoria 3800, Australia.
| | - Douglas R MacFarlane
- ARC Centre of Excellence for Electromaterials Science, School of Chemistry, Monash University, Victoria 3800, Australia.
| | - Jie Zhang
- ARC Centre of Excellence for Electromaterials Science, School of Chemistry, Monash University, Victoria 3800, Australia.
| |
Collapse
|
11
|
Zhang Y, Zhang X, Bond AM, Zhang J. Identification of a new substrate effect that enhances the electrocatalytic activity of dendritic tin in CO2 reduction. Phys Chem Chem Phys 2018; 20:5936-5941. [DOI: 10.1039/c7cp07723h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Sn electrocatalyst for CO2 reduction to formate with enhanced selectivity has been developed based on a new substrate effect.
Collapse
Affiliation(s)
- Ying Zhang
- School of Chemistry
- Monash University
- Clayton 3800
- Australia
- ARC Centre of Excellence for Electromaterials Science
| | - Xiaolong Zhang
- School of Chemistry
- Monash University
- Clayton 3800
- Australia
| | - Alan M. Bond
- School of Chemistry
- Monash University
- Clayton 3800
- Australia
- ARC Centre of Excellence for Electromaterials Science
| | - Jie Zhang
- School of Chemistry
- Monash University
- Clayton 3800
- Australia
- ARC Centre of Excellence for Electromaterials Science
| |
Collapse
|
12
|
Chen L, Li F, Zhang Y, Bentley CL, Horne M, Bond AM, Zhang J. Electrochemical Reduction of Carbon Dioxide in a Monoethanolamine Capture Medium. CHEMSUSCHEM 2017; 10:4109-4118. [PMID: 28799204 DOI: 10.1002/cssc.201701075] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/22/2017] [Indexed: 06/07/2023]
Abstract
The electrocatalytic reduction of CO2 in a 30 % (w/w) monoethanolamine (MEA) aqueous solution was undertaken at In, Sn, Bi, Pb, Pd, Ag, Cu and Zn metal electrodes. Upon the dissolution of CO2 , the non-conducting MEA solution is transformed into a conducting one, as is required for the electrochemical reduction of CO2 . Both an increase in the electrode surface porosity and the addition of the surfactant cetyltrimethylammonium bromide (CTAB) suppress the competing hydrogen evolution reaction; the latter has a significantly stronger impact. The combination of a porous metal electrode and the addition of 0.1 % (w/w) CTAB results in the reduction of molecular CO2 to CO and formate ions, and the product distribution is highly dependent on the identity of the metal electrode used. At a potential of -0.8 V versus the reversible hydrogen electrode (RHE) with an indium electrode with a coralline-like structure, the faradaic efficiencies for the generation of CO and [HCOO]- ions are 22.8 and 54.5 %, respectively compared to efficiencies of 2.9 and 60.8 % with a porous lead electrode and 38.2 and 2.4 % with a porous silver electrode. Extensive data for the other five electrodes are also provided. The optimal conditions for CO2 reduction are identified, and mechanistic details for the reaction pathways are proposed in this proof-of-concept electrochemical study in a CO2 capture medium. The conditions and features needed to achieve industrially and commercially viable CO2 reduction in an amine-based capture medium are considered.
Collapse
Affiliation(s)
- Lu Chen
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Fengwang Li
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Ying Zhang
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Mike Horne
- CSIRO Minerals Resources Business Unit, Clayton, Vic, 3168, Australia
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
13
|
Huo S, Weng Z, Wu Z, Zhong Y, Wu Y, Fang J, Wang H. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28519-28526. [PMID: 28786653 DOI: 10.1021/acsami.7b07707] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
One major challenge to the electrochemical conversion of CO2 to useful fuels and chemical products is the lack of efficient catalysts that can selectively direct the reaction to one desirable product and avoid the other possible side products. Making use of strong metal/oxide interactions has recently been demonstrated to be effective in enhancing electrocatalysis in the liquid phase. Here, we report one of the first systematic studies on composition-dependent influences of metal/oxide interactions on electrocatalytic CO2 reduction, utilizing Cu/SnOx heterostructured nanoparticles supported on carbon nanotubes (CNTs) as a model catalyst system. By adjusting the Cu/Sn ratio in the catalyst material structure, we can tune the products of the CO2 electrocatalytic reduction reaction from hydrocarbon-favorable to CO-selective to formic acid-dominant. In the Cu-rich regime, SnOx dramatically alters the catalytic behavior of Cu. The Cu/SnOx-CNT catalyst containing 6.2% of SnOx converts CO2 to CO with a high faradaic efficiency (FE) of 89% and a jCO of 11.3 mA·cm-2 at -0.99 V versus reversible hydrogen electrode, in stark contrast to the Cu-CNT catalyst on which ethylene and methane are the main products for CO2 reduction. In the Sn-rich regime, Cu modifies the catalytic properties of SnOx. The Cu/SnOx-CNT catalyst containing 30.2% of SnOx reduces CO2 to formic acid with an FE of 77% and a jHCOOH of 4.0 mA·cm-2 at -0.99 V, outperforming the SnOx-CNT catalyst which only converts CO2 to formic acid in an FE of 48%.
Collapse
Affiliation(s)
- Shengjuan Huo
- Department of Chemistry, Science Colleges, Shanghai University , 99 Shangda Road, Shanghai 200444, China
- Department of Chemistry, Yale University , New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Zhe Weng
- Department of Chemistry, Yale University , New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Zishan Wu
- Department of Chemistry, Yale University , New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Yiren Zhong
- Department of Chemistry, Yale University , New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Yueshen Wu
- Department of Chemistry, Yale University , New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Jianhui Fang
- Department of Chemistry, Science Colleges, Shanghai University , 99 Shangda Road, Shanghai 200444, China
| | - Hailiang Wang
- Department of Chemistry, Yale University , New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale University , West Haven, Connecticut 06516, United States
| |
Collapse
|