1
|
Ágoston Á, Balassa L, Yadav M, Hajdu C, Ballai G, Kovács Z, Gyulavári T, Solymos K, Kukovecz Á, Kónya Z, Pap Z. Surface-anchored N-based functional groups driven photoactivity of SrTiO 3. Heliyon 2024; 10:e37421. [PMID: 39323807 PMCID: PMC11422017 DOI: 10.1016/j.heliyon.2024.e37421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Surface modification, including the anchoring of functional groups is a popular method to increase the photocatalytic activity of semiconductor photocatalysts. These species can trap excited electrons, thus prolonging the life of the charge carriers. N-containing functional groups are suitable for this purpose due to their high electron density. Here, we report a facile synthesis method for preparing interfacial N-based functional groups-modified and nitrogen-doped SrTiO3 photocatalysts. Among the modified samples (with 0.42-11.14 at.% nominal nitrogen content), the one with 7.71 at.% nitrogen showed 6.4 times higher photooxidation efficiency for phenol and 2.2 times better photoreduction efficiency for CO2 conversion than the unmodified SrTiO3 reference. Characterization results showed that using a low amount of nitrogen source resulted in low but measurable nitrogen doping, which did not significantly affect the photocatalytic activity. The formation of surface amine groups was significant even at lower initial nitrogen concentrations, while higher amounts of nitrogen source gradually resulted in the incorporation of nitrogen in higher amounts. Surface amine groups decreased the recombination of charge carriers, resulting in increased photocatalytic activity.
Collapse
Affiliation(s)
- Áron Ágoston
- Department of Physical Chemistry and Materials Sciences, University of Szeged, H-6720, Szeged, Aradi v.sqr.1, Hungary
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720, Szeged, Rerrich Béla sqr. 1, Hungary
| | - Lilla Balassa
- Department of Physical Chemistry and Materials Sciences, University of Szeged, H-6720, Szeged, Aradi v.sqr.1, Hungary
| | - Mohit Yadav
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720, Szeged, Rerrich Béla sqr. 1, Hungary
| | - Cintia Hajdu
- Department of Physical Chemistry and Materials Sciences, University of Szeged, H-6720, Szeged, Aradi v.sqr.1, Hungary
| | - Gergő Ballai
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720, Szeged, Rerrich Béla sqr. 1, Hungary
| | - Zoltán Kovács
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720, Szeged, Rerrich Béla sqr. 1, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720, Szeged, Rerrich Béla sqr. 1, Hungary
| | - Karolina Solymos
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720, Szeged, Rerrich Béla sqr. 1, Hungary
- Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, HU-6722, Szeged, Egyetem Str. 2-6, Hungary
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720, Szeged, Rerrich Béla sqr. 1, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720, Szeged, Rerrich Béla sqr. 1, Hungary
| | - Zsolt Pap
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720, Szeged, Rerrich Béla sqr. 1, Hungary
- Centre of Nanostructured Materials and Bio-Nano Interfaces, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Treboniu Laurian street 42, Cluj-Napoca, RO, 400271, Romania
- Institute of Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Fântânele Str. 30, RO, 400294, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Sun Y, Sun W, Li J, Zhang T, Zhao W, Xiang G, Yang T, He L. Highly graphitized porous carbon/reduced graphene oxide for ultrahigh enrichment and ultrasensitive determination of polycyclic aromatic hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132699. [PMID: 37827103 DOI: 10.1016/j.jhazmat.2023.132699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
There is an urgent need to develop efficient and reliable coating materials for solid phase microextraction (SPME), in order to quantify and monitor pollutants in environmental waters. Herein, a highly graphitized porous carbon/reduced graphene oxide (PC/rGO) was successfully synthesized by pyrolysis of metal organic framework/graphene oxide precursors, and used as a SPME coating for ultrahigh enrichment of polycyclic aromatic hydrocarbons (PAHs) from water. The as-prepared PC/rGO exhibited high degree of graphitization, abundant number of micro/mesopores along with exceptional thermal stability, making it an ideal SPME coating material. The PC/rGO fiber offered an ultrahigh enrichment factor for PAHs (up to 126057), which could be attributed to the multiple interactions between the PC/rGO and PAHs, including hydrophobic and π-π interactions, partitioning, and mesopore filling effect. In the analysis of PAHs, the PC/rGO fiber showed a wide linearity (0.007-100 ng mL-1), low limits of detection (0.0005-0.005 ng mL-1), and good repeatability (RSDs <10.1%, n = 5) under optimized conditions. The established method was applicable for ultrasensitive determination of PAHs in different environmental waters and showed satisfactory recoveries. This study provides a novel way for constructing thermally stable SPME coating having efficient extraction performance.
Collapse
Affiliation(s)
- Yaming Sun
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou 450001, PR China
| | - Wenjie Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Junnan Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou 450001, PR China
| | - Guoqiang Xiang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou 450001, PR China
| | - Tiantian Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou 450001, PR China.
| |
Collapse
|
3
|
Tsou SJ, Mazurkiewicz-Pawlicka M, Chiou YJ, Lin CK. Effect of Synchrotron X-ray Irradiation Time on the Particle Size and DFAFC Performance of Pd/CNT Catalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:162. [PMID: 38251127 PMCID: PMC10820203 DOI: 10.3390/nano14020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Global energy sources are limited, and energy requirements are ever-increasing due to the demand for developments in human life and technology. The environmentally friendly direct formic acid fuel cell (DFAFC) is an attractive electronic device due to its clean energy. In a DFAFC, an anodic catalyst plays an important role concerning the oxidation pathway and activity. In the present study, palladium (Pd) was synthesized by synchrotron X-ray photoreduction using various irradiation times (0.5-4 min) to control the particle size. An acid-treated carbon nanotube (A-CNT) was used as the template for Pd deposition. The A-CNT and Pd/A-CNT were examined using scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy to reveal the microstructural characteristics. Electrochemical evaluation, electrocatalytic activity, and the DFAFC performance of so-obtained Pd/A-CNT catalysts were investigated. The experiment's results showed that the Pd/A-CNT-2 (i.e., synchrotron photoreduction for 2 min) underwent a direct formic acid oxidation pathway and possessed a high ECSA value of 62.59 m2/gPd and superior electrocatalytic activity of 417.7 mA/mgPd. In a single DFAFC examination, the anodic Pd/A-CNT-2 catalyst had a power density of 106.2 mW/mgPd and a relatively long lifetime of 2.91 h. Pd/A-CNT-2 anodic catalysts synthesized by surfactant-free synchrotron X-ray photoreduction with a rapid processing time (2 min) are potential candidates for DFAFC applications.
Collapse
Affiliation(s)
- Sheng-Jung Tsou
- Department of Chemical Engineering and Biotechnology, Tatung University, Taipei 104-327, Taiwan;
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110-301, Taiwan
| | | | - Yuh-Jing Chiou
- Department of Chemical Engineering and Biotechnology, Tatung University, Taipei 104-327, Taiwan;
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110-301, Taiwan
| | - Chung-Kwei Lin
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110-301, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110-301, Taiwan
| |
Collapse
|
4
|
Majeed I, Arif A, Idrees A, Ullah H, Ali H, Mehmood A, Rashid A, Nadeem MA, Nadeem MA. Synergistic Effect of Pd Co-Catalyst and rGO–TiO2 Hybrid Support for Enhanced Photoreforming of Oxygenates. HYDROGEN 2023. [DOI: 10.3390/hydrogen4010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Photoreforming biomass-derived waste such as glycerol into hydrogen fuel is a renewable hydrogen generation technology that has the potential to become important due to unavoidable CO2 production during methane steam reforming. Despite tremendous efforts, the challenge of developing highly active photocatalysts at a low cost still remains elusive. Here, we developed a novel photocatalyst with a hybrid support comprising reduced graphene oxide (rGO) and TiO2 nanorods (TNR). rGO in the hybrid support not only performed as an excellent scavenger of electrons from the semiconductor conduction band due to its suitable electrochemical potential, but also acted as an electron transport highway to the metal co-catalyst, which otherwise is not possible by simply increasing metal loading due to the shadowing effect. A series of hybrid supports with different TNR and rGO ratios were prepared by the deposition method. Pd nanoparticles were deposited over hybrid support through the chemical reduction method. Pd/rGO-TNRs photocatalyst containing 4 wt.% rGO contents in the support and 1 wt.% nominal Pd loading demonstrated hydrogen production activity ~41 mmols h−1g−1, which is 4 and 40 times greater than benchmark Au/TiO2 and pristine P25. The findings of this works provide a new strategy in optimizing charge extraction from TiO2, which otherwise has remained impossible due to a fixed tradeoff between metal loading and the detrimental shadowing effect.
Collapse
|
5
|
Haq Khan ZU, Khan TM, Khan A, Shah NS, Muhammad N, Tahir K, Iqbal J, Rahim A, Khasim S, Ahmad I, Shabbir K, Gul NS, Wu J. Brief review: Applications of nanocomposite in electrochemical sensor and drugs delivery. Front Chem 2023; 11:1152217. [PMID: 37007050 PMCID: PMC10060975 DOI: 10.3389/fchem.2023.1152217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The recent advancement of nanoparticles (NPs) holds significant potential for treating various ailments. NPs are employed as drug carriers for diseases like cancer because of their small size and increased stability. In addition, they have several desirable properties that make them ideal for treating bone cancer, including high stability, specificity, higher sensitivity, and efficacy. Furthermore, they might be taken into account to permit the precise drug release from the matrix. Drug delivery systems for cancer treatment have progressed to include nanocomposites, metallic NPs, dendrimers, and liposomes. Materials’ mechanical strength, hardness, electrical and thermal conductivity, and electrochemical sensors are significantly improved using nanoparticles (NPs). New sensing devices, drug delivery systems, electrochemical sensors, and biosensors can all benefit considerably from the NPs’ exceptional physical and chemical capabilities. Nanotechnology is discussed in this article from a variety of angles, including its recent applications in the medical sciences for the effective treatment of bone cancers and its potential as a promising option for treating other complex health anomalies via the use of anti-tumour therapy, radiotherapy, the delivery of proteins, antibiotics, and vaccines, and other methods. This also brings to light the role that model simulations can play in diagnosing and treating bone cancer, an area where Nanomedicine has recently been formulated. There has been a recent uptick in using nanotechnology to treat conditions affecting the skeleton. Consequently, it will pave the door for more effective utilization of cutting-edge technology, including electrochemical sensors and biosensors, and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
- *Correspondence: Zia Ul Haq Khan, ; Noor Shad Gul,
| | - Taj Malook Khan
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Amjad Khan
- Department of Zoology, University of Lakki Marwat, Lakki Marwat, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Abdur Rahim
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syed Khasim
- Nanotechnology Research Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Khadija Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Noor Shad Gul
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Zia Ul Haq Khan, ; Noor Shad Gul,
| | - Jianbo Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Hydrothermal Co-Crystallization of Novel Copper Tungstate-Strontium Titanate Crystal Composite for Enhanced Photocatalytic Activity and Increased Electron–Hole Recombination Time. Catalysts 2023. [DOI: 10.3390/catal13020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The development of catalysts continues to have a significant influence on science today since we can utilize them to efficiently destroy some contaminants. A study in this field is justified because there is a dearth of comprehensive literature on the creation of SrTiO3-based photocatalysts. Related to this topic, here we report the facile preparation of a structure-modified SrTiO3 photocatalyst, by incorporating CuWO4. Within the case of the CuWO4-modified samples (0.5–3 wt% nominal CuWO4 content), the photo-oxidation of phenol, as a contaminant, was more than two times higher than the initial SrTiO3. However, the photocatalytic activity does not change linearly with increasing CuWO4 content, and the CWS2.5 (2.5 wt% nominal CuWO4 content and 4.25 wt% measured content) has the highest photo-activity under the applied conditions. The reason for the better activity was the increased recombination time of charge separation on the catalyst surface. Slower recombination can result in more water being oxidized to hydroxyl radicals, leading to the faster decomposition of the phenol.
Collapse
|
7
|
A New 2D Metal–Organic Framework for Photocatalytic Degradation of Organic Dyes in Water. Catalysts 2023. [DOI: 10.3390/catal13020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Two–dimensional (2D) metal–organic frameworks (MOFs) are fascinating photocatalytic materials because of their unique physical and catalytic properties. Herein, we report a new (E)–4–(3–carboxyacrylamido) benzoic acid [ABA–MA] ligand synthesized under facile conditions. This ABA–MA ligand is further utilized to synthesize a copper-based 2D MOF via the solvothermal process. The resulting 2D MOF is characterized for morphology and electronic structural analysis using advanced techniques, such as proton nuclear magnetic resonance, Fourier-transform infrared spectroscopy, ultraviolet–visible spectroscopy, and scanning electron microscopy. Furthermore, 2D MOF is employed as a photocatalyst for degrading organic dyes, demonstrating the degradation/reduction of methylene blue (MeBl) dye with excellent catalytic/photodegradation activity in the absence of any photosensitizer or cocatalyst. The apparent rate constant (kap) values for the catalytic degradation/reduction of MeBl on the Cu(II)–[ABA-MA] MOF are reported to be 0.0093 min−1, 0.0187 min−1, and 0.2539 min−1 under different conditions of sunlight and NaBH4. The kinetics and stability evaluations reveal the noteworthy photocatalytic potential of the Cu(II)–[ABA–MA] MOF for wastewater treatment. This work offers new insights into the fabrication of new MOFs for highly versatile photocatalytic applications.
Collapse
|
8
|
Agoro MA, Meyer EL. Roles of TOPO Coordinating Solvent on Prepared Nano-Flower/Star and Nano-Rods Nickel Sulphides for Solar Cells Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3409. [PMID: 36234536 PMCID: PMC9565322 DOI: 10.3390/nano12193409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The present study describes a cheap, safe, and stable chemical process for the formation of nickel sulphide (NiS) with the use of mixed and single molecular precursors. The production pathway is uncomplicated, energy-efficient, quick, and toxic-free, with large-scale commercialization potential. The obtained results show the effect of tri-N-octylphosphine oxide (TOPO) as a coordinating solvent on the reaction chemistry, size distributions, morphology, and optical properties of both precursors. Ni[N,N-benz-N-p-anisldtc] as NiSa, Ni[N,N-benzldtc] as NiSb, and Ni[N-p-anisldtc] as NiSc thermally decompose in a single step at 333-334 °C. The X-ray diffraction peaks for NiSa, NiSb, and NiSc matched well with the cubic NiS nanoparticles and corresponded to planes of (111), (220), and (311). The extrapolated linear part from the Tauc plots reveals band gap values of 3.12 eV, 2.95 eV, and 2.5 eV, which confirms the three samples as potential materials for solar cell applications. The transmission electron microscopy (TEM) technique affirmed the quantum dot size distribution at 19.69-28.19 nm for NISa, 9.08-16.63 nm for NISb, and 9.37-10.49 nm for NISc, respectively. NiSa and NiSc show a clearly distinguishable flower/star like morphology, while NiSb displays a compact nano-rod shape. To the best of the authors' knowledge, very few studies have been reported on the flower/star like and nano-rod shapes, but none with the dithiocarbamate molecular precursor for NiS nanoparticles.
Collapse
Affiliation(s)
- Mojeed A. Agoro
- Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
- Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Edson L. Meyer
- Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
9
|
Sol-Gel Synthesized High Entropy Metal Oxides as High-Performance Catalysts for Electrochemical Water Oxidation. Molecules 2022; 27:molecules27185951. [PMID: 36144684 PMCID: PMC9504205 DOI: 10.3390/molecules27185951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Hexanary high-entropy oxides (HEOs) were synthesized through the mechanochemical sol-gel method for electrocatalytic water oxidation reaction (WOR). As-synthesized catalysts were subjected to characterization, including X-ray diffraction (XRD), Fourier transforms infrared (FTIR) analysis, and scanning electron microscopy (SEM). All the oxide systems exhibited sharp diffraction peaks in XRD patterns indicating the defined crystal structure. Strong absorption between 400–700 cm−1 in FTIR indicated the formation of metal-oxide bonds in all HEO systems. WOR was investigated via cyclic voltammetry using HEOs as electrode platforms, 1M KOH as the basic medium, and 1M methanol (CH3OH) as the facilitator. Voltammetric profiles for both equiatomic (EHEOs) and non-equiatomic (NEHEOs) were investigated, and NEHEOs exhibited the maximum current output for WOR. Moreover, methanol addition improved the current profiles, thus leading to the electrode utility in direct methanol fuel cells as a sequential increase in methanol concentration from 1M to 2M enhanced the OER current density from 61.4 to 94.3 mA cm−2 using NEHEO. The NEHEOs comprising a greater percentage of Al, ([Al0.35(Mg, Fe, Cu, Ni, Co)0.65]3O4) displayed high WOR catalytic performance with the maximum diffusion coefficient, D° (10.90 cm2 s−1) and heterogeneous rate constant, k° (7.98 cm s−1) values. These primary findings from the EC processes for WOR provide the foundation for their applications in high-energy devices. Conclusively, HEOs are proven as novel and efficient catalytic platforms for electrochemical water oxidation.
Collapse
|
10
|
Optimization of Plasmonic Copper Content at Copper-Modified Strontium Titanate (Cu-SrTiO3): Synthesis, Characterization, Photocatalytic Activity. Catalysts 2022. [DOI: 10.3390/catal12091041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Catalyst development still has a major impact on science today, as we can use catalysts to break down certain pollutants in an energy-efficient way. There is no comprehensive literature on the development of SrTiO3-based photocatalysts, so study in this area is justified. Related to this topic, here we report the facile preparation of surface-modified SrTiO3 photocatalyst, performed by plasmonic copper deposition. In the case of the copper-modified samples (0.25–3 wt.% Cu content), the photooxidation of phenol, as model contaminant, was almost 4–5 times higher than the bare SrTiO3. However, the photocatalytic activity was not linearly related to copper content, since the highest photoactivity was achieved at 1 wt.% copper content. The reason for the better activity was the plasmonic effect of copper, which increases the recombination time of charge separation on the catalyst surface. During slower recombination, more water is oxidized to hydroxyl radicals, which can lead to faster degradation of phenol.
Collapse
|
11
|
Zaman S, Wang M, Liu H, Sun F, Yu Y, Shui J, Chen M, Wang H. Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Mohan A, Peter J, Rout L, Thomas AM, Nagappan S, Zhang WJ, Parambadath S, Park SS, Ha CS. In situ thermosensitive hybrid mesoporous silica: preparation and the catalytic activities for carbonyl compound reduction. Dalton Trans 2021; 50:11730-11741. [PMID: 34296727 DOI: 10.1039/d1dt00323b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, free-radical polymerisation inside MCM-41 mesopores was examined to expose a construction route for a temperature-responsive switchable polymer-silica nanohybrid material with well-defined porosity. Herein, we introduced a vinyl monomer (N-isopropyl acrylamide), a cross-linker, and an AIBN initiator into the palladium nanoparticle incorporated MCM-41 pore channels using the wet-impregnation method followed by in situ radical polymerisation. The structural properties of the synthesised PNIPAM-PdNP-MCM-41 catalyst were analysed by various sophisticated analytical techniques. The temperature switchable nanohybrid catalyst was used to reduce carbonyl compounds to their corresponding alcohols. The catalyst showed high catalytic efficiency and robustness in an aqueous medium at 25 °C. Moreover, the system's polymer layer remarkably boosted catalytic selectivity and activity for carbonyl compound reduction as compared to other controlled catalysts. The suggested switchable system can be employed as a temperature-controllable heterogeneous catalyst and highlights a substitute technique to counter the methodical insufficiency in switchable supported molecular catalytic system production.
Collapse
Affiliation(s)
- Anandhu Mohan
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Zhenni Ma
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Ulrich Legrand
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Ergys Pahija
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Jason R. Tavares
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Daria C. Boffito
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
- Canada Research Chair in Intensified Mechano-Chemical Processes for Sustainable Biomass Conversion, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| |
Collapse
|
14
|
Meléndez‐González PC, Sánchez‐Castro E, Alonso‐Lemus IL, Pérez‐Hernández R, Escobar‐Morales B, Garay‐Tapia AM, Pech‐Rodríguez WJ, Rodríguez‐Varela J. Bifunctional Pd‐CeO
2
Nanorods/C Nanocatalyst with High Electrochemical Stability and Catalytic Activity for the ORR and EOR in Alkaline Media. ChemistrySelect 2020. [DOI: 10.1002/slct.202003755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Perla C. Meléndez‐González
- Programa de Nanociencias y Nanotecnología Cinvestav Unidad Saltillo Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
| | - Esther Sánchez‐Castro
- Programa de Nanociencias y Nanotecnología Cinvestav Unidad Saltillo Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
- Programa de Sustentabilidad de los Recursos Naturales y Energía Cinvestav Unidad Saltillo 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
| | - Ivonne L. Alonso‐Lemus
- CONACYT Programa de Sustentabilidad de los Recursos Naturales y Energía Cinvestav Unidad Saltillo 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
| | - Raúl Pérez‐Hernández
- Estudios Ambientales Instituto Nacional de Investigaciones Nucleares Carr. México-Toluca. S/N. La Marquesa Ocoyoacac, Edo. De México C.P. 52750 México
| | - Beatriz Escobar‐Morales
- CONACYT, Energía Renovable Centro de Investigación Científica de Yucatán Calle 43 No. 130 Col. Chuburná de Hidalgo, Mérida Yucatán C.P. 97200 México
| | - Andrés M. Garay‐Tapia
- Centro de Investigación en Materiales Avanzados S.C. Unidad Monterrey Alianza Norte 202, Autopista Monterrey-Aeropuerto km 10, Parque PIIT, Apodaca Nuevo León C.P. 66628 México
| | - Wilian J. Pech‐Rodríguez
- Maestría en Ingeniería Universidad Politécnica de Victoria Av. Nuevas Tecnologías 5902, Parque Científico y Tecnológico de Tamaulipas, Cd Victoria Tamps. C.P.87138 México
| | - Javier Rodríguez‐Varela
- Programa de Nanociencias y Nanotecnología Cinvestav Unidad Saltillo Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
- Programa de Sustentabilidad de los Recursos Naturales y Energía Cinvestav Unidad Saltillo 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
| |
Collapse
|
15
|
Parkash A. Incorporation of Pt-Cr nanoparticles into highly porous MOF-5 as efficient oxygen reduction electrocatalysts. NANOTECHNOLOGY 2020; 31:445403. [PMID: 32702680 DOI: 10.1088/1361-6528/aba8bd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing new materials that can enhance the efficiency of energy conversion and storage systems is critical to meeting the rising energy demand of low-carbon economies. Mesoporous materials have the advantages of large specific surface area and multiple channels, which can increase efficiency and flexibility in terms of energy and power density. An active catalyst for oxygen reduction reaction (ORR) based on Pt-Cr nanoparticles with ultralow Pt content (0.90 wt%) has been studied in this paper. In contrast, electrocatalyst Pt/Cr/NPC-900 exhibited an ORR activity with onset potential (E o) of 1.01 V vs. RHE in an alkaline solution that was superior to commercial Pt/C (20 wt%) (0.96 V vs. RHE). The presence of metal oxides and optimal Pt content enhanced the ORR activity. Therefore, the synergistic effect of the high surface area increased charge transfer, and excellent structural stability can achieve significant ORR efficiency, which is conducive to excellent activity. These findings provide a new perspective for economical and practical ORR electrocatalysts to be designed and synthesized rationally.
Collapse
Affiliation(s)
- Anand Parkash
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710119, People's Republic of China. School of Chemistry and Chemical Engineering, Shanxi Normal University, Chang'an West Street 620, Xi'an 710119, People's Republic of China
| |
Collapse
|
16
|
Rajesh D, Mahendiran C, Suresh C. The Promotional Effect of Ag in Pd‐Ag/Carbon Nanotube‐Graphene Electrocatalysts for Alcohol and Formic Acid Oxidation Reactions. ChemElectroChem 2020. [DOI: 10.1002/celc.202000642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- D. Rajesh
- Department of ChemistryUniversity College of EngineeringAnna University, Konam Nagercoil 629004 India
| | - C. Mahendiran
- Department of ChemistryUniversity College of EngineeringAnna University, Konam Nagercoil 629004 India
| | - C. Suresh
- Electrodics and Electrocatalysis DivisionCSIR-Central Electrochemical Research Institute Karaikudi India
| |
Collapse
|
17
|
Liu X, Bu Y, Cheng T, Gao W, Jiang Q. Flower-like carbon supported Pd–Ni bimetal nanoparticles catalyst for formic acid electrooxidation. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Xu M, Zhao Y, Chen H, Ni W, Liu M, Huo S, Wu L, Zang X, Yang Z, Yan Y. Role of Ultrathin Carbon Shell in Enhancing the Performance of PtZn Intermetallic Nanoparticles as an Anode Electrocatalyst for Direct Formic Acid Fuel Cells. ChemElectroChem 2019. [DOI: 10.1002/celc.201900332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Min Xu
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Yufei Zhao
- State Key Lab of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Hong Chen
- Beijing Aerospace Propulsion Institute Beijing 100076 China
| | - Wei Ni
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Mingquan Liu
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Silu Huo
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Linlin Wu
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Xiaogang Zang
- State Key Lab of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Zhiyu Yang
- State Key Lab of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Yi‐Ming Yan
- State Key Lab of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
19
|
Iqbal M, Kaneti YV, Kim J, Yuliarto B, Kang YM, Bando Y, Sugahara Y, Yamauchi Y. Chemical Design of Palladium-Based Nanoarchitectures for Catalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804378. [PMID: 30633438 DOI: 10.1002/smll.201804378] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Palladium (Pd) plays an important role in numerous catalytic reactions, such as methanol and ethanol oxidation, oxygen reduction, hydrogenation, coupling reactions, and carbon monoxide oxidation. Creating Pd-based nanoarchitectures with increased active surface sites, higher density of low-coordinated atoms, and maximized surface coverage for the reactants is important. To address the limitations of pure Pd, various Pd-based nanoarchitectures, including alloys, intermetallics, and supported Pd nanomaterials, have been fabricated by combining Pd with other elements with similar or higher catalytic activity for many catalytic reactions. Herein, recent advances in the preparation of Pd-based nanoarchitectures through solution-phase chemical reduction and electrochemical deposition methods are summarized. Finally, the trend and future outlook in the development of Pd nanocatalysts toward practical catalytic applications are discussed.
Collapse
Affiliation(s)
- Muhammad Iqbal
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuf Valentino Kaneti
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jeonghun Kim
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Brian Yuliarto
- Department of Engineering Physics and Research Center for Nanoscience and Nanotechnology, Institute of Technology Bandung, Ganesha 10, Bandung, 40132, Indonesia
| | - Yong-Mook Kang
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Yoshio Bando
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Institute of Molecular Plus, Tianjin University, Nankai District, Tianjin, 300072, P. R. China
- Australian Institute of Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yoshiyuki Sugahara
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
- Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Yusuke Yamauchi
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheunggu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| |
Collapse
|
20
|
Sun J, Luo X, Cai W, Li J, Liu Z, Xiong J, Yang Z. Ionic-exchange immobilization of ultra-low loading palladium on a rGO electro-catalyst for high activity formic acid oxidation. RSC Adv 2018; 8:18619-18625. [PMID: 35541134 PMCID: PMC9080579 DOI: 10.1039/c8ra03043j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/15/2018] [Indexed: 11/21/2022] Open
Abstract
A formic acid oxidation electro-catalyst with ultra-low palladium (Pd) loading was prepared via an ionic exchange method by utilizing the acidic functional groups on graphene oxide (GO). After simultaneous reduction of exchanged Pd2+ and residual functional groups on the GO surface, an ionic exchange reduced Pd catalyst supported on reduced GO (IE-Pd/rGO) was obtained. Three times improved formic acid oxidation mass activity compared with that of the conventional synthesized Pd/C catalyst was exhibited for the IE-Pd/rGO catalyst. More importantly, formic acid oxidation stability on the IE-Pd/rGO catalyst was remarkably improved due to synergistic effect of the strong immobilization of Pd nanoparticles and the effect of in situ doped N on the rGO support. A formic acid oxidation electro-catalyst with ultra-low palladium (Pd) loading was prepared via an ionic exchange method by utilizing the acidic functional groups on graphene oxide (GO).![]()
Collapse
Affiliation(s)
- Jiuxiao Sun
- College of Materials Science and Engineering
- Wuhan Textile University
- Wuhan
- China
| | - Xingying Luo
- Sustainable Energy Laboratory
- Faculty of Materials Science and Chemistry
- China University of Geosciences (Wuhan)
- Wuhan
- P. R. China
| | - Weiwei Cai
- Sustainable Energy Laboratory
- Faculty of Materials Science and Chemistry
- China University of Geosciences (Wuhan)
- Wuhan
- P. R. China
| | - Jing Li
- Sustainable Energy Laboratory
- Faculty of Materials Science and Chemistry
- China University of Geosciences (Wuhan)
- Wuhan
- P. R. China
| | - Zhao Liu
- Sustainable Energy Laboratory
- Faculty of Materials Science and Chemistry
- China University of Geosciences (Wuhan)
- Wuhan
- P. R. China
| | - Jie Xiong
- Sustainable Energy Laboratory
- Faculty of Materials Science and Chemistry
- China University of Geosciences (Wuhan)
- Wuhan
- P. R. China
| | - Zehui Yang
- Sustainable Energy Laboratory
- Faculty of Materials Science and Chemistry
- China University of Geosciences (Wuhan)
- Wuhan
- P. R. China
| |
Collapse
|