1
|
Kelsey SR, Griaznov G, Spaeth AD, Janzen DE, Douglas JT, Thompson WH, Barybin MV. Tuning the redox profile of the 6,6'-biazulenic platform through functionalization along its molecular axis. Chem Commun (Camb) 2024; 60:5213-5216. [PMID: 38652073 PMCID: PMC11080966 DOI: 10.1039/d4cc00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
The E1/2 potential associated with reduction of the linearly-functionalized 6,6'-biazulenic scaffold is accurately correlated to the combined σp Hammett parameters of the substituents over >600 mV range. X-ray crystallographic analysis of the 2,2'-dichloro-substituted derivative revealed unexpectedly short C-Cl bond distances, along with other metric changes, suggesting a non-trivial cycloheptafulvalene-like structural contribution.
Collapse
Affiliation(s)
- Shaun R Kelsey
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | - Georgii Griaznov
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | - Andrew D Spaeth
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | - Daron E Janzen
- Department of Chemistry and Biochemistry, St. Catherine University, St. Paul, MN 55105, USA
| | - Justin T Douglas
- NMR Laboratory, Molecular Structures Group, University of Kansas, Lawrence, KS 66047, USA
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | - Mikhail V Barybin
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
2
|
Wijesinghe TP, Kaya B, Gonzálvez MA, Harmer JR, Gholam Azad M, Bernhardt PV, Dharmasivam M, Richardson DR. Steric Blockade of Oxy-Myoglobin Oxidation by Thiosemicarbazones: Structure-Activity Relationships of the Novel PPP4pT Series. J Med Chem 2023; 66:15453-15476. [PMID: 37922410 DOI: 10.1021/acs.jmedchem.3c01612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The di-2-pyridylketone thiosemicarbazones demonstrated marked anticancer efficacy, prompting progression of DpC to clinical trials. However, DpC induced deleterious oxy-myoglobin oxidation, stifling development. To address this, novel substituted phenyl thiosemicarbazone (PPP4pT) analogues and their Fe(III), Cu(II), and Zn(II) complexes were prepared. The PPP4pT analogues demonstrated potent antiproliferative activity (IC50: 0.009-0.066 μM), with the 1:1 Cu:L complexes showing the greatest efficacy. Substitutions leading to decreased redox potential of the PPP4pT:Cu(II) complexes were associated with higher antiproliferative activity, while increasing potential correlated with increased redox activity. Surprisingly, there was no correlation between redox activity and antiproliferative efficacy. The PPP4pT:Fe(III) complexes attenuated oxy-myoglobin oxidation significantly more than the clinically trialed thiosemicarbazones, Triapine, COTI-2, and DpC, or earlier thiosemicarbazone series. Incorporation of phenyl- and styryl-substituents led to steric blockade, preventing approach of the PPP4pT:Fe(III) complexes to the heme plane and its oxidation. The 1:1 Cu(II):PPP4pT complexes were inert to transmetalation and did not induce oxy-myoglobin oxidation.
Collapse
Affiliation(s)
- Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
3
|
Alzubidi AE, Bond AM, Martin LL. Fluorine Substitution of TCNQ Alters the Redox-Driven Catalytic Pathway for the Ferricyanide-Thiosulfate Reaction. Chemphyschem 2023; 24:e202300289. [PMID: 37876345 DOI: 10.1002/cphc.202300289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Indexed: 10/26/2023]
Abstract
Mechanistic variation in catalysis through substituent-based redox tuning is well established. Fluorination of TCNQ (TCNQ=tetracyanoquinodimethane) provides ~850 mV variation in the redox potentials of theTCNQF n 0 / 1 - ${{{\rm {TCNQF}}}_{{\rm {n}}}^{{\rm {0/1-}}}}$ andTCNQF n 1 - / 2 - ${{{\rm {TCNQF}}}_{{\rm {n}}}^{{\rm {1-/2-}}}}$ (n=0, 2, 4) processes. WithTCNQF 4 1 - ${{{\rm {TCNQF}}}_{{\rm {4}}}^{{\rm {1-}}}}$ , catalysis of the kinetically very slow ferrocyanide-thiosulfate redox reaction in aqueous solution occurs via a mechanism in which the catalystTCNQF 4 1 - ${{{\rm {TCNQF}}}_{{\rm {4}}}^{{\rm {1-}}}}$ is reduced toTCNQF 4 2 - ${{{\rm {TCNQF}}}_{{\rm {4}}}^{{\rm {2-}}}}$ when reacting withS 2 O 3 2 - ${{{\rm {S}}}_{{\rm {2}}}{{\rm {O}}}_{{\rm {3}}}^{{\rm {2-}}}}$ which is oxidised toS 4 O 6 2 - ${{{\rm {S}}}_{{\rm {4}}}{{\rm {O}}}_{{\rm {6}}}^{{\rm {2-}}}}$ . Subsequently,TCNQF 4 2 - ${{{\rm {TCNQF}}}_{{\rm {4}}}^{{\rm {2-}}}}$ reacts with[ Fe ( CN ) 6 ] 3 - ${{{\rm {[Fe(CN)}}}_{{\rm {6}}}{{\rm {]}}}^{{\rm {3-}}}}$ to form[ Fe ( CN ) 6 ] 4 - ${{{\rm {[Fe(CN)}}}_{{\rm {6}}}{{\rm {]}}}^{{\rm {4-}}}}$ and reform theTCNQF 4 1 - ${{{\rm {TCNQF}}}_{{\rm {4}}}^{{\rm {1-}}}}$ catalyst, in another thermodynamically favoured process. An analogous mechanism applies withTCNQF 2 1 - ${{{\rm {TCNQF}}}_{{\rm {2}}}^{{\rm {1-}}}}$ as a catalyst. In contrast, since the reaction ofS 2 O 3 2 - ${{{\rm {S}}}_{{\rm {2}}}{{\rm {O}}}_{{\rm {3}}}^{{\rm {2-}}}}$ withTCNQ 1 - ${{{\rm {TCNQ}}}^{{\rm {1-}}}}$ is thermodynamically unfavourable, an alternative mechanism is required to explain the catalytic activity observed in this non-fluorinated system. Here, upon addition ofTCNQ 1 - ${{{\rm {TCNQ}}}^{{\rm {1-}}}}$ , reduction of[ Fe ( CN ) 6 ] 3 - ${{{\rm {[Fe(CN)}}}_{{\rm {6}}}{{\rm {]}}}^{{\rm {3-}}}}$ to[ Fe ( CN ) 6 ] 4 - ${{{\rm {[Fe(CN)}}}_{{\rm {6}}}{{\rm {]}}}^{{\rm {4-}}}}$ occurs with concomitant oxidation ofTCNQ 1 - ${{{\rm {TCNQ}}}^{{\rm {1-}}}}$ toTCNQ 0 ${{{\rm {TCNQ}}}^{{\rm {0}}}}$ , which then acts as the catalyst forS 2 O 3 2 - ${{{\rm {S}}}_{{\rm {2}}}{{\rm {O}}}_{{\rm {3}}}^{{\rm {2-}}}}$ oxidation. Thermodynamic data explain the observed differences in the catalytic mechanisms.CuTCNQF n ${{{\rm {CuTCNQF}}}_{{\rm {n}}}}$ (n=0, 4) also act as catalysts for the ferricyanide-thiosulfate reaction in aqueous solution. The present study shows that homogeneous pathways are available following addition of these dissolved materials. Previously, theseCuTCNQF n ${{{\rm {CuTCNQF}}}_{{\rm {n}}}}$ (n=0, 4) coordination polymers have been regarded as insoluble in water and proposed as heterogeneous catalysts for the ferricyanide-thiosulfate reaction. Details and mechanistic differences were established using UV-visible spectrophotometry and cyclic voltammetry.
Collapse
Affiliation(s)
- Anbrah E Alzubidi
- School of Chemistry, Monash University, 3800, Clayton, Victoria, Australia
| | - Alan M Bond
- School of Chemistry, Monash University, 3800, Clayton, Victoria, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, 3800, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Dharmasivam M, Kaya B, Wijesinghe T, Gholam Azad M, Gonzálvez MA, Hussaini M, Chekmarev J, Bernhardt PV, Richardson DR. Designing Tailored Thiosemicarbazones with Bespoke Properties: The Styrene Moiety Imparts Potent Activity, Inhibits Heme Center Oxidation, and Results in a Novel "Stealth Zinc(II) Complex". J Med Chem 2023; 66:1426-1453. [PMID: 36649565 DOI: 10.1021/acs.jmedchem.2c01600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A novel, potent, and selective antitumor agent, namely (E)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one 4,4-dimethyl-3-thiosemicarbazone (PPP44mT), and its analogues were synthesized and characterized and displayed strikingly distinctive properties. This activity was mediated by the inclusion of a styrene moiety, which through steric and electrochemical mechanisms prevented deleterious oxy-myoglobin or oxy-hemoglobin oxidation relative to other potent thiosemicarbazones, i.e., di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) or di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Structure-activity relationship analysis demonstrated specific tuning of PPP44mT electrochemistry further inhibited oxy-myoglobin or oxy-hemoglobin oxidation. Both PPP44mT and its Cu(II) complexes showed conspicuous almost immediate cytotoxicity against SK-N-MC tumor cells (within 3 h). In contrast, [Zn(PPP44mT)2] demonstrated a pronounced delay in activity, taking 48 h before marked antiproliferative efficacy was apparent. As such, [Zn(PPP44mT)2] was designated as a "stealth Zn(II) complex" that overcomes the near immediate cytotoxicity of PPP44mT or its copper complexes. Upon examination of the suppression of oncogenic signaling, [Zn(PPP44mT)2] was superior at inhibiting cyclin D1 expression compared to DpC or Dp44mT.
Collapse
Affiliation(s)
- Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia.,Department of Chemistry, Istanbul University-Cerrahpasa, Avcilar, 34320Istanbul, Turkey
| | - Tharushi Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane4072, Australia
| | - Mohammad Hussaini
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Jason Chekmarev
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane4072, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan4111, Australia.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| |
Collapse
|
5
|
Bang J, Park J. The role of molecular oxygen (O2) and UV light in the anion radical formation and stability of TCNQ and its fluorinated derivatives. J Anal Sci Technol 2023. [DOI: 10.1186/s40543-022-00364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AbstractWe report the electronic absorption spectroscopy of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its fluorinated derivatives (F2TCNQ and F4TCNQ), well-known electron-accepting molecules in common organic solvents (toluene, chlorobenzene, acetonitrile, and ethanol) under controlled exposure to air (O2) and UV light. All compounds (FxTCNQ (x = 0, 2, 4)) were stable in a neutral state (FxTCNQ0) in toluene and chlorobenzene, even under both O2 and UV light. On the other hand, in EtOH, the formation of FxTCNQ·− was monitored upon controlled exposure to O2 or UV light. Especially in air-equilibrated ethanol upon the UV-illumination, efficient α,α-dicyano-p-toluoylcyanide anion (DCTC−) and its fluorinated derivatives were generated evinced by the absorption peak near 480 nm, whereas the reaction was shut off by removing O2 or blocking UV light, thereby keeping FxTCNQ·− stable. However, even in deaerated ethanol, upon the UV-illumination, the anion formation of TCNQ and its fluorinated derivatives (FxTCNQ·−, x = 0, 2, 4) was inevitable, showing the stability of FxTCNQ0 depends on the choice of solvent.
Collapse
|
6
|
Alzubidi AE, Bond AM, Martin LL. Oxidation of Thiosulphate using TCNQF
n
(n=0, 2, 4) Derivatives with a Tuneable Driving Force: Electrochemical and Spectrophotometric Detection of a Protonated Intermediate. ChemElectroChem 2022. [DOI: 10.1002/celc.202200538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Alan M. Bond
- School of Chemistry Monash University Clayton 3800 Victoria Australia
| | | |
Collapse
|
7
|
Alzubidi AE, Bond AM, Martin LL. Electrochemical Investigation of the Oxidation of Thiosulfate by 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane and Its Anion Radical. ChemElectroChem 2021. [DOI: 10.1002/celc.202101232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Alan M. Bond
- School of Chemistry Monash University Clayton 3800 Victoria Australia
| | | |
Collapse
|
8
|
A comparative DFT study of tetracyanoquinodimethane and its difluoro and tetrafluoro analogs. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Watts KE, Clary KE, Lichtenberger DL, Pemberton JE. FTIR Spectroelectrochemistry of F4TCNQ Reduction Products and Their Protonated Forms. Anal Chem 2020; 92:7154-7161. [PMID: 32357003 DOI: 10.1021/acs.analchem.0c00615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tetrafluorinated derivative of 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), is of interest for charge transfer complex formation and as a p-dopant in organic electronic materials. Fourier transform infrared (FTIR) spectroscopy is commonly employed to understand the redox properties of F4TCNQ in the matrix of interest; specifically, the ν(C≡N) region of the F4TCNQ spectrum is exquisitely sensitive to the nature of the charge transfer between F4TCNQ and its matrix. However, little work has been done to understand how these vibrational modes change in the presence of possible acid/base chemistry. Here, FTIR spectroelectrochemistry is coupled with density functional theory spectral simulation for study of the electrochemically generated F4TCNQ radical anion and dianion species and their protonation products with acids. Vibrational modes of HF4TCNQ-, formed by proton-coupled electron transfer, are identified, and we demonstrate that this species is readily formed by strong acids, such as trifluoroacetic acid, and to a lesser extent, by weak acids, such as water. The implications of this chemistry for use of F4TCNQ as a p-dopant in organic electronic materials is discussed.
Collapse
Affiliation(s)
- Kristen E Watts
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Kayla E Clary
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Dennis L Lichtenberger
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Jeanne E Pemberton
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
10
|
Vo NT, Bond AM, Martin LL. Systematic and non-systematic substituent effects gleaned from studies on CuTCNQFn (n = 0, 1, 2, 4): Electrocrystallisation and characterisation of CuTCNQF. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Liu EC, Topczewski JJ. Gram-Scale Synthesis of 2,5-Difluoro-7,7,8,8-tetracyanoquinodimethane (F 2-TCNQ). J Org Chem 2020; 85:4560-4564. [PMID: 32118430 DOI: 10.1021/acs.joc.0c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecule 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane (F2-TCNQ) is an organic semiconductor with many promising properties, including high charge mobility (μ). However, an efficient gram-scale synthesis of F2-TCNQ has not been fully documented. Herein, we report a synthesis of F2-TCNQ via a three-step sequence that affords F2-TCNQ in 58% cumulative yield. This synthesis was used to prepare more than 1 g of F2-TCNQ.
Collapse
Affiliation(s)
- En-Chih Liu
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Joseph J Topczewski
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Vo NT, Bond AM, Martin LL. Electrochemically Directed Synthesis of Cobalt(II) and Nickel(II) TCNQF21–/2– Coordination Polymers: Solubility and Substituent Effects in the TCNQFn (n=0, 1, 2, 4) Series of Complexes. Aust J Chem 2020. [DOI: 10.1071/ch20187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The reversible diffusion controlled cyclic voltammetry for the reduction of TCNQFn0/1–/2– (where n=0, 1, 2, 4) changes significantly on addition of Co2+ and Ni2+ transition metal ions (M2+) because the kinetics associated with electrocrystallisation of the resulting coordination polymers [M(TCNQF2)2(H2O)2] and [M(TCNQF2)] are rapid on the voltammetric time scale. The voltammetry of solutions containing M2+ and TCNQF2 was undertaken in acetonitrile (0.1M Bu4NPF6) at both GC and ITO electrodes. New one electron reduced TCNQF2 materials prepared via electrochemically directed synthesis were shown to have the formula [M(TCNQF2)2(H2O)2], assessed by vibrational (IR and Raman) spectroscopy, elemental analysis and thermogravimetric analysis. The solubility of [Ni(TCNQF2)2(H2O)2] (Ksp=8.29×10−11 M3) was significantly higher than the [Co(TCNQF2)2(H2O)2] (Ksp=1.43×10−11M3). Cyclic voltammetric data suggest the electrocrystallisation of two phases of [Ni(TCNQF2)2(H2O)2] occurs, which is not evident for [Co(TCNQF2)2(H2O)2]. Electrocrystallisation of the highly insoluble [M(TCNQF2)] was achieved at low M2+ and TCNQF2 concentrations. A comparison with published data on the voltammetry of TCNQFn (n=0, 1, 2 and 4) for the series of TCNQFn (n=0, 1, 2 and 4) containing M2+ is provided. An assessment of the electronic impact of the fluorine substituent of the underlying redox reactions also is established. Predictions are made for the voltammetric behaviour expected for the other transition metal cations with reduced TCNQFn derivatives.
Collapse
|
13
|
Rietsch P, Witte F, Sobottka S, Germer G, Krappe A, Güttler A, Sarkar B, Paulus B, Resch-Genger U, Eigler S. Diaminodicyanoquinones: Fluorescent Dyes with High Dipole Moments and Electron-Acceptor Properties. Angew Chem Int Ed Engl 2019; 58:8235-8239. [PMID: 30963663 DOI: 10.1002/anie.201903204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 11/11/2022]
Abstract
Fluorescent dyes are applied in various fields of research, including solar cells and light-emitting devices, and as reporters for assays and bioimaging studies. Fluorescent dyes with an added high dipole moment pave the way to nonlinear optics and polarity sensitivity. Redox activity makes it possible to switch the molecule's photophysical properties. Diaminodicyanoquinone derivatives possess high dipole moments, yet only low fluorescence quantum yields, and have therefore been neglected as fluorescent dyes. Here we investigate the fluorescence properties of diaminodicyanoquinones using a combined theoretical and experimental approach and derive molecules with a fluorescence quantum yield exceeding 90 %. The diaminodicyanoquinone core moiety provides chemical versatility and can be integrated into novel molecular architectures with unique photophysical features.
Collapse
Affiliation(s)
- Philipp Rietsch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Felix Witte
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Sebastian Sobottka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Gregor Germer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Alexander Krappe
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Arne Güttler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Department 1, Division Biophotonics, Richard Willstätter Straße 11, 12489, Berlin, Germany
| | - Biprajit Sarkar
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Beate Paulus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Department 1, Division Biophotonics, Richard Willstätter Straße 11, 12489, Berlin, Germany
| | - Siegfried Eigler
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| |
Collapse
|
14
|
Rietsch P, Witte F, Sobottka S, Germer G, Krappe A, Güttler A, Sarkar B, Paulus B, Resch‐Genger U, Eigler S. Diaminodicyanochinone – Fluoreszenzfarbstoffe mit hohem Dipolmoment und Elektronenakzeptor‐Eigenschaften. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Philipp Rietsch
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Felix Witte
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstraße 34–36 14195 Berlin Deutschland
| | - Gregor Germer
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Alexander Krappe
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Arne Güttler
- Bundesanstalt für Materialforschung und -prüfung (BAM) Department 1, Division Biophotonics Richard Willstätter Straße 11 12489 Berlin Deutschland
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstraße 34–36 14195 Berlin Deutschland
| | - Beate Paulus
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Ute Resch‐Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM) Department 1, Division Biophotonics Richard Willstätter Straße 11 12489 Berlin Deutschland
| | - Siegfried Eigler
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| |
Collapse
|
15
|
Vo NT, Martin LL, Bond AM. A Systematic (Spectro‐) Electrochemical Approach to the Synthesis and Characterisation of Co(II) and Ni(II) Compounds Containing Reduced Forms of TCNQF. ChemElectroChem 2019. [DOI: 10.1002/celc.201800678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nguyen T. Vo
- School of Chemistry Monash University Clayton, Victoria 3800 Australia
- Current Address: Department of Chemistry The University of Danang, University of Science and Education 459 Ton Duc Thang Danang Vietnam
| | | | - Alan M. Bond
- School of Chemistry Monash University Clayton, Victoria 3800 Australia
| |
Collapse
|
16
|
Vo NT, Martin LL, Bond AM. Electrochemistry of TCNQF2 in acetonitrile in the presence of [Cu(CH3CN)4]+: Electrocrystallisation and characterisation of CuTCNQF2. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|