1
|
Patenaude HK, Damjanovic N, Rakos J, Weber DC, Jacobs AI, Bryan SA, Lines AM, Heineman WR, Branch SD, Rusinek CA. A Free-Standing Boron-Doped Diamond Grid Electrode for Fundamental Spectroelectrochemistry. Anal Chem 2024; 96:18605-18614. [PMID: 39533798 DOI: 10.1021/acs.analchem.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Spectroelectrochemistry (SEC) is a powerful technique that enables a variety of redox properties to be studied, including formal potential (Eo), thermodynamic values (ΔG, ΔH, ΔS), diffusion coefficient (D), electron transfer stoichiometry (n), and others. SEC requires an electrode which light can pass through while maintaining sufficient electrical conductivity. This has been traditionally composed of metal or metal oxide films atop transparent substrates like glass, quartz, or metallic mesh. Robust electrode materials like boron-doped diamond (BDD) could help expand the environments in which SEC can be performed, but most designs are limited to thin films (∼100-200 nm) on transparent substrates less resilient than free-standing BDD. This work presents a free-standing BDD grid electrode (G-BDD) for fundamental SEC measurements, using the well-characterized Fe(CN)63-/4- redox couple as proof-of-concept. With a combination of cyclic voltammetry (CV), thin-layer SEC, and chronoabsorptometry, several of the redox properties mentioned above were calculated and compared. For Eo', n, and D, similar results were obtained when comparing the CV [Eo' = +0.279 (±0.002) V vs Ag/AgCl; n = 0.97; D = 4.1 × 10-6 cm2·s-1] and SEC [Eo' = +0.278 (±0.001) V vs Ag/AgCl; n = 0.91; D = 5.2 × 10-6 cm2·s-1] techniques. Both values align with what has been previously reported. To calculate D from the SEC data, modification of the classical equation used in chronoabsorptometry was required to accommodate the G-BDD electrode geometry. Overall, this work expands on the applicability of SEC techniques and BDD as a versatile electrode material.
Collapse
Affiliation(s)
- Hannah K Patenaude
- Radiochemistry Program, Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
- Inorganic, Isotope, and Actinide Chemistry, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nastasija Damjanovic
- Radiochemistry Program, Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Jason Rakos
- Radiochemistry Program, Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Nuclear and Chemical Engineering, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Dustyn C Weber
- Radiochemistry Program, Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Aaron I Jacobs
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| | - Samuel A Bryan
- Nuclear and Chemical Engineering, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Amanda M Lines
- Nuclear and Chemical Engineering, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - William R Heineman
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Shirmir D Branch
- Nuclear and Chemical Engineering, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Cory A Rusinek
- Radiochemistry Program, Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
2
|
Cheng W, Li C, Wang T, Cheng S, Gao N, Li H. Electronic and magnetic properties of Au-doped diamond surfaces by first-principles calculation. Phys Chem Chem Phys 2024; 26:22371-22377. [PMID: 39139045 DOI: 10.1039/d4cp01436g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The electronic and magnetic properties of the Au-doped diamond surface are investigated by first-principles calculation. After Au-doping, diamond shows surface p-type conductivity with an areal electron density of 6.34 × 1013 cm-2. Unlike the non-magnetic feature of intrinsic diamond, magnetism is induced for diamond (100), (110) and (111) surfaces as well as at different terminations (H, F, N and O). The magnetism originates from the s-p hybridization between the Au-6s state and the C-2p state, and the spin charge density and magnetic moments of Au-doped diamond originate mainly from the Au atoms and their surrounding C atoms. Further studies show that the magnetic properties still maintain under different doping concentrations (0.125-0.5 monolayer). Therefore, this study would provide great potential applications of diamond in novel magnetic semiconductors and transistors.
Collapse
Affiliation(s)
- Wei Cheng
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
| | - Cong Li
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
| | - Tianyi Wang
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
| | - Shaoheng Cheng
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
| | - Nan Gao
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
| | - Hongdong Li
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Jayamaha G, Maleki M, Bentley CL, Kang M. Practical guidelines for the use of scanning electrochemical cell microscopy (SECCM). Analyst 2024; 149:2542-2555. [PMID: 38632960 DOI: 10.1039/d4an00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Scanning electrochemical cell microscopy (SECCM) has emerged as a transformative technology for electrochemical materials characterisation and the study of single entities, garnering global adoption by numerous research groups. While details on the instrumentation and operational principles of SECCM are readily available, the growing need for practical guidelines, troubleshooting strategies, and a systematic overview of applications and trends has become increasingly evident. This tutorial review addresses this gap by offering a comprehensive guide to the practical application of SECCM. The review begins with a discussion of recent developments and trends in the application of SECCM, before providing systematic approaches to (and the associated troubleshooting associated with) instrumental set up, probe fabrication, substrate preparation and the deployment of environmental (e.g., atmosphere and humidity) control. Serving as an invaluable resource, this tutorial review aims to equip researchers and practitioners entering the field with a comprehensive guide to essential considerations for conducting successful SECCM experiments.
Collapse
Affiliation(s)
- Gunani Jayamaha
- School of Chemistry, The University of Sydney, Camperdown, 2006 NSW, Australia.
| | - Mahin Maleki
- Institute for Frontier Materials, Deakin University, Burwood, VIC 3125, Australia
| | - Cameron L Bentley
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia
| | - Minkyung Kang
- School of Chemistry, The University of Sydney, Camperdown, 2006 NSW, Australia.
| |
Collapse
|
5
|
Chaudhuri S, Logsdail AJ, Maurer RJ. Stability of Single Gold Atoms on Defective and Doped Diamond Surfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:16187-16203. [PMID: 37609382 PMCID: PMC10440818 DOI: 10.1021/acs.jpcc.3c03900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Indexed: 08/24/2023]
Abstract
Polycrystalline boron-doped diamond (BDD) is widely used as a working electrode material in electrochemistry, and its properties, such as its stability, make it an appealing support material for nanostructures in electrocatalytic applications. Recent experiments have shown that electrodeposition can lead to the creation of stable small nanoclusters and even single gold adatoms on the BDD surfaces. We investigate the adsorption energy and kinetic stability of single gold atoms adsorbed onto an atomistic model of BDD surfaces by using density functional theory. The surface model is constructed using hybrid quantum mechanics/molecular mechanics embedding techniques and is based on an oxygen-terminated diamond (110) surface. We use the hybrid quantum mechanics/molecular mechanics method to assess the ability of different density functional approximations to predict the adsorption structure, energy, and barrier for diffusion on pristine and defective surfaces. We find that surface defects (vacancies and surface dopants) strongly anchor adatoms on vacancy sites. We further investigated the thermal stability of gold adatoms, which reveals high barriers associated with lateral diffusion away from the vacancy site. The result provides an explanation for the high stability of experimentally imaged single gold adatoms on BDD and a starting point to investigate the early stages of nucleation during metal surface deposition.
Collapse
Affiliation(s)
- Shayantan Chaudhuri
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Centre
for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Andrew J. Logsdail
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United
Kingdom
| | - Reinhard J. Maurer
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department
of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
6
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
7
|
Wahab O, Kang M, Meloni GN, Daviddi E, Unwin PR. Nanoscale Visualization of Electrochemical Activity at Indium Tin Oxide Electrodes. Anal Chem 2022; 94:4729-4736. [PMID: 35255211 PMCID: PMC9007413 DOI: 10.1021/acs.analchem.1c05168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/11/2022] [Indexed: 01/08/2023]
Abstract
Indium tin oxide (ITO) is a popular electrode choice, with diverse applications in (photo)electrocatalysis, organic photovoltaics, spectroelectrochemistry and sensing, and as a support for cell biology studies. Although ITO surfaces exhibit heterogeneous local electrical conductivity, little is known as to how this translates to electrochemistry at the same scale. This work investigates nanoscale electrochemistry at ITO electrodes using high-resolution scanning electrochemical cell microscopy (SECCM). The nominally fast outer-sphere one-electron oxidation of 1,1'-ferrocenedimethanol (FcDM) is used as an electron transfer (ET) kinetic marker to reveal the charge transfer properties of the ITO/electrolyte interface. SECCM measures spatially resolved linear sweep voltammetry at an array of points across the ITO surface, with the topography measured synchronously. Presentation of SECCM data as current maps as a function of potential reveals that, while the entire surface of ITO is electroactive, the ET activity is highly spatially heterogeneous. Kinetic parameters (standard rate constant, k0, and transfer coefficient, α) for FcDM0/+ are assigned from 7200 measurements at sites across the ITO surface using finite element method modeling. Differences of 3 orders of magnitude in k0 are revealed, and the average k0 is about 20 times larger than that measured at the macroscale. This is attributed to macroscale ET being largely limited by lateral conductivity of the ITO electrode under electrochemical operation, rather than ET kinetics at the ITO/electrolyte interface, as measured by SECCM. This study further demonstrates the considerable power of SECCM for direct nanoscale characterization of electrochemical processes at complex electrode surfaces.
Collapse
Affiliation(s)
- Oluwasegun
J. Wahab
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute
for Frontier Materials Deakin University, Burwood, Victoria 3125, Australia
| | - Gabriel N. Meloni
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Enrico Daviddi
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
8
|
Ando T, Asai K, Macpherson J, Einaga Y, Fukuma T, Takahashi Y. Nanoscale Reactivity Mapping of a Single-Crystal Boron-Doped Diamond Particle. Anal Chem 2021; 93:5831-5838. [PMID: 33783208 DOI: 10.1021/acs.analchem.1c00053] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Boron-doped diamond (BDD) is most often grown by chemical vapor deposition (CVD) in polycrystalline form, where the electrochemical response is averaged over the whole surface. Deconvoluting the impact of crystal orientation, surface termination, and boron-doped concentration on the electrochemical response is extremely challenging. To tackle this problem, we use CVD to grow isolated single-crystal microparticles of BDD with the crystal facets (100, square-shaped) and (111, triangle-shaped) exposed and combine with hopping mode scanning electrochemical cell microscopy (HM-SECCM) for electrochemical interrogation of the individual crystal faces (planar and nonplanar). Measurements are made on both hydrogen- (H-) and oxygen (O-)-terminated single-crystal facets with two different redox mediators, [Ru(NH3)6]3+/2+ and Fe(CN)64-/3-. Extraction of the half-wave potential from linear sweep and cyclic voltammetric experiments at all measurement (pixel) points shows unequivocally that electron transfer is faster at the H-terminated (111) surface than at the H-terminated (100) face, attributed to boron dopant differences. The most dramatic differences were seen for [Ru(NH3)6]3+/2+ when comparing the O-terminated (100) surface to the H-terminated (100) face. Removal of the H-surface conductivity layer and a potential-dependent density of states were thought to be responsible for the behavior observed. Finally, a bimodal distribution in the electrochemical activity on the as-grown H-terminated polycrystalline BDD electrode is attributed to the dominance of differently doped (100) and (111) facets in the material.
Collapse
Affiliation(s)
- Tomohiro Ando
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kai Asai
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Julie Macpherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Takeshi Fukuma
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Yasufumi Takahashi
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
9
|
Daviddi E, Shkirskiy V, Kirkman PM, Robin MP, Bentley CL, Unwin PR. Nanoscale electrochemistry in a copper/aqueous/oil three-phase system: surface structure-activity-corrosion potential relationships. Chem Sci 2020; 12:3055-3069. [PMID: 34164075 PMCID: PMC8179364 DOI: 10.1039/d0sc06516a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Practically important metal electrodes are usually polycrystalline, comprising surface grains of many different crystallographic orientations, as well as grain boundaries. In this study, scanning electrochemical cell microscopy (SECCM) is applied in tandem with co-located electron backscattered diffraction (EBSD) to give a holistic view of the relationship between the surface structure and the electrochemical activity and corrosion susceptibility of polycrystalline Cu. An unusual aqueous nanodroplet/oil (dodecane)/metal three-phase configuration is employed, which opens up new prospects for fundamental studies of multiphase electrochemical systems, and mimics the environment of corrosion in certain industrial and automotive applications. In this configuration, the nanodroplet formed at the end of the SECCM probe (nanopipette) is surrounded by dodecane, which acts as a reservoir for oil-soluble species (e.g., O2) and can give rise to enhanced flux(es) across the immiscible liquid–liquid interface, as shown by finite element method (FEM) simulations. This unique three-phase configuration is used to fingerprint nanoscale corrosion in a nanodroplet cell, and to analyse the interrelationship between the Cu oxidation, Cu2+ deposition and oxygen reduction reaction (ORR) processes, together with nanoscale open circuit (corrosion) potential, in a grain-by-grain manner. Complex patterns of surface reactivity highlight the important role of grains of high-index orientation and microscopic surface defects (e.g., microscratches) in modulating the corrosion-properties of polycrystalline Cu. This work provides a roadmap for in-depth surface structure–function studies in (electro)materials science and highlights how small variations in surface structure (e.g., crystallographic orientation) can give rise to large differences in nanoscale reactivity. Probing Cu corrosion in an aqueous nanodroplet/oil/metal three-phase environment revealed unique patterns of surface reactivity. The electrochemistry of high-index facets cannot be predicted simply from the low-index {001}, {011} and {111} responses.![]()
Collapse
Affiliation(s)
- Enrico Daviddi
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | | | | | - Cameron L Bentley
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK .,School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
10
|
Heard DM, Lennox AJJ. Electrode Materials in Modern Organic Electrochemistry. Angew Chem Int Ed Engl 2020; 59:18866-18884. [PMID: 32633073 PMCID: PMC7589451 DOI: 10.1002/anie.202005745] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 11/11/2022]
Abstract
The choice of electrode material is critical for achieving optimal yields and selectivity in synthetic organic electrochemistry. The material imparts significant influence on the kinetics and thermodynamics of electron transfer, and frequently defines the success or failure of a transformation. Electrode processes are complex and so the choice of a material is often empirical and the underlying mechanisms and rationale for success are unknown. In this review, we aim to highlight recent instances of electrode choice where rationale is offered, which should aid future reaction development.
Collapse
Affiliation(s)
- David M. Heard
- University of BristolSchool of ChemistryCantocks CloseBristol, AvonBS8 1TSUK
| | | |
Collapse
|
11
|
Yule LC, Daviddi E, West G, Bentley CL, Unwin PR. Surface microstructural controls on electrochemical hydrogen absorption at polycrystalline palladium. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Affiliation(s)
- David M. Heard
- University of Bristol School of Chemistry Cantocks Close Bristol, Avon BS8 1TS UK
| | | |
Collapse
|
13
|
Ribeiro FWP, de Oliveira RC, de Oliveira AG, Nascimento RF, Becker H, de Lima-Neto P, Correia AN. Electrochemical sensing of thiabendazole in complex samples using boron-doped diamond electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Counihan MJ, Setwipatanachai W, Rodríguez‐López J. Interrogating the Surface Intermediates and Water Oxidation Products of Boron‐Doped Diamond Electrodes with Scanning Electrochemical Microscopy. ChemElectroChem 2019. [DOI: 10.1002/celc.201900659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Michael J. Counihan
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue, Urbana Illinois 61801 Untied States
- Joint Center for Energy Storage Research (JCESR)
| | - Worapol Setwipatanachai
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue, Urbana Illinois 61801 Untied States
| | - Joaquín Rodríguez‐López
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue, Urbana Illinois 61801 Untied States
- Joint Center for Energy Storage Research (JCESR)
- Beckman Institute for Advanced Science and Technology
| |
Collapse
|
15
|
Cobb SJ, Macpherson JV. Enhancing Square Wave Voltammetry Measurements via Electrochemical Analysis of the Non-Faradaic Potential Window. Anal Chem 2019; 91:7935-7942. [DOI: 10.1021/acs.analchem.9b01857] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Samuel J. Cobb
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Diamond Science and Technology CDT, University of Warwick, Coventry CV4 7AL, U.K
| | | |
Collapse
|
16
|
Bentley CL, Edmondson J, Meloni GN, Perry D, Shkirskiy V, Unwin PR. Nanoscale Electrochemical Mapping. Anal Chem 2018; 91:84-108. [PMID: 30500157 DOI: 10.1021/acs.analchem.8b05235] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|