1
|
Cao S, Ning J, He X, Wang T, Xu C, Chen M, Wang K, Zhou M, Jiang K. In Situ Plasma Polymerization of Self-Stabilized Polythiophene Enables Dendrite-Free Lithium Metal Anodes with Ultra-Long Cycle Life. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311204. [PMID: 38459801 DOI: 10.1002/smll.202311204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Constructing a flexible and chemically stable multifunctional layer for the lithium (Li) metal anodes is a highly effective approach to improve the uneven deposition of Li+ and suppress the dendrite growth. Herein, an organic protecting layer of polythiophene is in situ polymerized on the Li metal via plasma polymerization. Compared with the chemically polymerized thiophene (C-PTh), the plasma polymerized thiophene layer (P-PTh), with a higher Young's modulus of 8.1 GPa, shows strong structural stability due to the chemical binding of the polythiophene and Li. Moreover, the nucleophilic C─S bond of polythiophene facilitates the decomposition of Li salts in the electrolytes, promoting the formation of LiF-rich solid electrolyte interface (SEI) layers. The synergetic effect of the rigid LiF as well as the flexible PTh-Li can effectively regulate the uniform Li deposition and suppress the growth of Li dendrites during the repeated stripping-plating, enabling the Li anodes with long-cycling lifespan over 8000 h (1 mA cm-2, 1 mAh cm-2) and 2500 h (10 mA cm-2, 10 mAh cm-2). Since the plasma polymerization is facile (5-20 min) and environmentally friendly (solvent-free), this work offers a novel and promising strategy for the construction of the forthcoming generation of high-energy-density batteries.
Collapse
Affiliation(s)
- Shengling Cao
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Ning
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin He
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tianqi Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Cheng Xu
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Manlin Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kangli Wang
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min Zhou
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kai Jiang
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Ge B, Hu L, Yu X, Wang L, Fernandez C, Yang N, Liang Q, Yang QH. Engineering Triple-Phase Interfaces around the Anode toward Practical Alkali Metal-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400937. [PMID: 38634714 DOI: 10.1002/adma.202400937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Alkali metal-air batteries (AMABs) promise ultrahigh gravimetric energy densities, while the inherent poor cycle stability hinders their practical application. To address this challenge, most previous efforts are devoted to advancing the air cathodes with high electrocatalytic activity. Recent studies have underlined the solid-liquid-gas triple-phase interface around the anode can play far more significant roles than previously acknowledged by the scientific community. Besides the bottlenecks of uncontrollable dendrite growth and gas evolution in conventional alkali metal batteries, the corrosive gases, intermediate oxygen species, and redox mediators in AMABs cause more severe anode corrosion and structural collapse, posing greater challenges to the stabilization of the anode triple-phase interface. This work aims to provide a timely perspective on the anode interface engineering for durable AMABs. Taking the Li-air battery as a typical example, this critical review shows the latest developed anode stabilization strategies, including formulating electrolytes to build protective interphases, fabricating advanced anodes to improve their anti-corrosion capability, and designing functional separator to shield the corrosive species. Finally, the remaining scientific and technical issues from the prospects of anode interface engineering are highlighted, particularly materials system engineering, for the practical use of AMABs.
Collapse
Affiliation(s)
- Bingcheng Ge
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Liang Hu
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiaoliang Yu
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lixu Wang
- Fujian XFH New Energy Materials Co, Ltd, No. 38, Shuidong Industry Park, Yongan, 366000, China
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB107QB, UK
| | - Nianjun Yang
- Department of Chemistry & IMO-IMOMEC, Hasselt University, Diepenbeek, 3590, Belgium
| | - Qinghua Liang
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, China
| | - Quan-Hong Yang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, TianjinUniversity, Tianjin, 300072, China
| |
Collapse
|
3
|
Jia S, Liu F, Xue J, Wang R, Huo H, Zhou J, Li L. Enhancing the Performance of Lithium-Oxygen Batteries with Quasi-Solid Polymer Electrolytes. ACS OMEGA 2023; 8:36710-36719. [PMID: 37841182 PMCID: PMC10568585 DOI: 10.1021/acsomega.3c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
The quasi-solid electrolyte membranes (QSEs) are obtained by solidifying the precursor of unsaturated polyester and liquid electrolyte in a glass fiber. By modifying the ratio of tetraethylene glycol dimethyl ether, QSE with balanced ionic conductivity, flexibility, and electrochemical stability window is acquired, which is helpful for inhibiting the decomposition of electrolyte on the cathode surface. The QSE is beneficial to the interfacial reaction of Li+, electrons, and O2 in the quasi-solid lithium-oxygen battery (LOB), can reduce the crossover of oxygen to the anode, and extend the cycle life of LOBs to 317 cycles. Benefitting from the application of QSE, a more stable solid electrolyte interface layer can be constructed on the anode side, which can homogenize Li+ flux and facilitate uniform Li deposition. Lithium-oxygen pouch cell with in situ formed QSE2 works well when the cell is folded or a corner is cut off. Our results indicate that the QSE plays important roles in both the cathode and Li metal anode, which can be further improved with the in situ forming strategy.
Collapse
Affiliation(s)
- SiXin Jia
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - FengQuan Liu
- College
of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - JinXin Xue
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rui Wang
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hong Huo
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - JianJun Zhou
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lin Li
- Beijing
Key Laboratory of Energy Conversion and Storage Materials, College
of Chemistry, Beijing Normal University, Beijing 100875, China
- College
of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Zou X, Lu Q, Wang C, She S, Liao K, Ran R, Zhou W, An L, Shao Z. A low-overpotential, long-life, and “dendrite-free” lithium-O2 battery realized by integrating “iodide-redox-phobic” and “Li-ion-philic” membrane. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Wang HF, Wang XX, Li F, Xu JJ. Fundamental Understanding and Construction of Solid‐State Li−Air Batteries. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Huan-Feng Wang
- College of Chemical and Food Zhengzhou University of Technology Zhengzhou 450044 P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Fei Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
- International Center of Future Science Jilin University Changchun 130012 P. R. China
| |
Collapse
|
6
|
zhou C, Lu K, Zhou S, Liu Y, Fang W, Hou Y, Ye J, Fu L, Chen Y, Liu L, Wu Y. Strategies toward anode stabilization in nonaqueous alkali metal-oxygen batteries. Chem Commun (Camb) 2022; 58:8014-8024. [DOI: 10.1039/d2cc02501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkali metal-O2 batteries exhibit ultra-high theoretical energy density which is even on a par with to fossil energy and expected to become the next generation of energy storage devices. However,...
Collapse
|
7
|
Wang H, Li J, Li F, Guan D, Wang X, Su W, Xu J. Strategies with Functional Materials in Tackling Instability Challenges of Non-aqueous Lithium-Oxygen Batteries. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0026-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Wang H, Wang X, Li M, Zheng L, Guan D, Huang X, Xu J, Yu J. Porous Materials Applied in Nonaqueous Li-O 2 Batteries: Status and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002559. [PMID: 32715511 DOI: 10.1002/adma.202002559] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Porous materials possessing high surface area, large pore volume, tunable pore structure, superior tailorability, and dimensional effect have been widely applied as components of lithium-oxygen (Li-O2 ) batteries. Herein, the theoretical foundation of the porous materials applied in Li-O2 batteries is provided, based on the present understanding of the battery mechanism and the challenges and advantageous qualities of porous materials. Furthermore, recent progress in porous materials applied as the cathode, anode, separator, and electrolyte in Li-O2 batteries is summarized, together with corresponding approaches to address the critical issues that remain at present. Particular emphasis is placed on the importance of the correlation between the function-orientated design of porous materials and key challenges of Li-O2 batteries in accelerating oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) kinetics, improving the electrode stability, controlling lithium deposition, suppressing the shuttle effect of the dissolved redox mediators, and alleviating electrolyte decomposition. Finally, the rational design and innovative directions of porous materials are provided for their development and application in Li-O2 battery systems.
Collapse
Affiliation(s)
- Huanfeng Wang
- College of Chemical and Food, Zhengzhou University of Technology, Zhengzhou, 450044, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaoxue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Malin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Lijun Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dehui Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaolei Huang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jijing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
9
|
Tong Z, Wang SB, Liao YK, Hu SF, Liu RS. Interface Between Solid-State Electrolytes and Li-Metal Anodes: Issues, Materials, and Processing Routes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47181-47196. [PMID: 33030017 DOI: 10.1021/acsami.0c13591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Li metal, which has a high theoretical capacity and negative electrochemical potential, is regarded as the "holy grail" in Li-ion batteries. However, the flammable nature of liquid electrolyte leads to safety issues. Hence, the cooperation of solid-state electrolyte and Li-metal anode is demanded. However, the short cycle life induced by interfacial issues is the main challenge faced by their cooperation. In this review, dendrite and interfacial side reactions are comprehensively analyzed as the main interfacial problems. Meanwhile, the "state-of-the-art" interphase materials are summarized. The challenges faced by each kind of material are underscored. Moreover, different processing routes to fabricate artificial interphase are also investigated from an engineering perspective. The processing routes suitable for mass production are also underscored.
Collapse
Affiliation(s)
- Zizheng Tong
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Bo Wang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Kai Liao
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Shu-Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
10
|
Mu X, Pan H, He P, Zhou H. Li-CO 2 and Na-CO 2 Batteries: Toward Greener and Sustainable Electrical Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903790. [PMID: 31512290 DOI: 10.1002/adma.201903790] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/11/2019] [Indexed: 05/08/2023]
Abstract
Metal-CO2 batteries, especially Li-CO2 and Na-CO2 batteries, offer a novel and attractive strategy for CO2 capture as well as energy conversion and storage with high specific energy densities. However, some scientific issues and challenges existing restrict their practical applications. Here, recent progress of crucial reaction mechanisms on cathodes in Li-CO2 and Na-CO2 batteries are summarized. The detailed reaction pathways can be modified by operation conditions, electrolyte compositions, and catalysts. Besides, specific discussions from aspects of catalyst design, stability of electrolytes, and anode protection are presented. Perspectives of several innovative directions are also put forward. This review provides an intensive understanding of Li-CO2 and Na-CO2 batteries and gives a useful guideline for the practical development of metal-CO2 batteries and even metal-air batteries.
Collapse
Affiliation(s)
- Xiaowei Mu
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Hui Pan
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Ping He
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Haoshen Zhou
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba, 3058568, Japan
| |
Collapse
|
11
|
Li C, Wei J, Qiu K, Wang Y. Li-air Battery with a Superhydrophobic Li-Protective Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23010-23016. [PMID: 32348116 DOI: 10.1021/acsami.0c05494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Li-air batteries operated in ambient air are imperative toward real practical applications. However, the passivation of lithium metal anodes induced by attacking air hinders their long-term running, accelerating the degradation of Li-air batteries. Herein, a hydrogel-derived hierarchical porous carbon (HDHPC) layer with superhydrophobicity is proved as an effective Li-protective layer for a Li-air battery that suppresses the H2O attack and lithium dendrite formation during cycling. Accordingly, the HDHPC protective layer-based Li-air cell exhibits eminent cycling stability in ambient air [relative humidity (RH) of ∼40%], which is far better than that of the Li-air cell without the HDHPC protective layer. It is also demonstrated that the conversion of O2/Li2O2 in Li-air batteries adversely affects the decomposition of the byproduct and electrolyte. The usage of the HDHPC protective layer pioneers a new avenue of developing high-performance Li-air batteries in ambient air.
Collapse
Affiliation(s)
- Chao Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Jishi Wei
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Ke Qiu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Gao R, Chen Q, Zhang W, Zhou D, Ning D, Schumacher G, Smirnov D, Sun L, Liu X. Oxygen defects-engineered LaFeO3-x nanosheets as efficient electrocatalysts for lithium-oxygen battery. J Catal 2020. [DOI: 10.1016/j.jcat.2020.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Abstract
Lithium-ion batteries have had a tremendous impact on several sectors of our society; however, the intrinsic limitations of Li-ion chemistry limits their ability to meet the increasing demands of developing more advanced portable electronics, electric vehicles, and grid-scale energy storage systems. Therefore, battery chemistries beyond Li ions are being intensively investigated and need urgent breakthroughs toward commercial applications, wherein the use of metallic Li is one of the most intuitive choices. Despite several decades of oblivion due to safety concerns regarding the growth of Li dendrites, Li-metal anodes are now poised to be revived because of the advances in investigative tools and globally invested efforts. In this review, we first summarize the existing issues with regard to Li anodes and their underlying reasons and then highlight the recent progress made in the development of high-performance Li anodes. Finally, we propose the persisting challenges and opportunities toward the exploration of practical Li-metal anodes.
Collapse
Affiliation(s)
- Xin Zhang
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China. and Institute of Molecular Plus, Tianjin University, No. 92 Weijin Road, Tianjin 300072, China.
| | - Yongan Yang
- Institute of Molecular Plus, Tianjin University, No. 92 Weijin Road, Tianjin 300072, China.
| | - Zhen Zhou
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China. and Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
14
|
Ha TA, Fdz De Anastro A, Ortiz-Vitoriano N, Fang J, MacFarlane DR, Forsyth M, Mecerreyes D, Howlett PC, Pozo-Gonzalo C. High Coulombic Efficiency Na-O 2 Batteries Enabled by a Bilayer Ionogel/Ionic Liquid. J Phys Chem Lett 2019; 10:7050-7055. [PMID: 31650842 DOI: 10.1021/acs.jpclett.9b02947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sodium-oxygen (Na-O2) cells are a promising high energy density storage technology with a theoretical specific energy of 1605 Wh kg-1. However, this technology faces certain challenges in order to achieve both a high practical energy density as well as long-term cycling capability. In this Letter, a superior Coulombic cyclic efficiency, close to 100%, has been demonstrated by the use of a bilayer electrolyte composed of an ionogel and an ionic liquid electrolyte, reported herein for the first time. The presence of the ionogel plays a major role in the prevention of side reactions originating at the anode, providing a promising route to extend cell cycling, whereas the ionic liquid is essential to support high reaction rates at the cathode.
Collapse
Affiliation(s)
- The An Ha
- ARC Centre of Excellence for Electromaterials Science, Institute for Frontier Materials , Deakin University , Geelong , Victoria 3200 , Australia
| | - Asier Fdz De Anastro
- Joxe Mari Korta Center , POLYMAT University of the Basque Country UPV-EHU , Avda. Tolosa 72 , 20018 Donostia-San Sebastian , Spain
| | - Nagore Ortiz-Vitoriano
- CIC EnergiGUNE , Alava Technology Park, C/Albert Einstein 48 , 01510 Miñano , Álava , Spain
- IKERBASQUE , Basque Foundation for Science , 48013 Bilbao , Spain
| | - Jian Fang
- ARC Centre of Excellence for Electromaterials Science, Institute for Frontier Materials , Deakin University , Geelong , Victoria 3200 , Australia
| | - Douglas R MacFarlane
- ARC Centre of Excellence for Electromaterials Science, School of Chemistry , Monash University , Victoria 3800 , Australia
| | - Maria Forsyth
- ARC Centre of Excellence for Electromaterials Science, Institute for Frontier Materials , Deakin University , Geelong , Victoria 3200 , Australia
- IKERBASQUE , Basque Foundation for Science , 48013 Bilbao , Spain
| | - David Mecerreyes
- Joxe Mari Korta Center , POLYMAT University of the Basque Country UPV-EHU , Avda. Tolosa 72 , 20018 Donostia-San Sebastian , Spain
- IKERBASQUE , Basque Foundation for Science , 48013 Bilbao , Spain
| | - Patrick C Howlett
- ARC Centre of Excellence for Electromaterials Science, Institute for Frontier Materials , Deakin University , Geelong , Victoria 3200 , Australia
| | - Cristina Pozo-Gonzalo
- ARC Centre of Excellence for Electromaterials Science, Institute for Frontier Materials , Deakin University , Geelong , Victoria 3200 , Australia
| |
Collapse
|