1
|
Dong H, Kang N, Li L, Li L, Yu Y, Chou S. Versatile Nitrogen-Centered Organic Redox-Active Materials for Alkali Metal-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311401. [PMID: 38181392 DOI: 10.1002/adma.202311401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Indexed: 01/07/2024]
Abstract
Versatile nitrogen-centered organic redox-active molecules have gained significant attention in alkali metal-ion batteries (AMIBs) due to their low cost, low toxicity, and ease of preparation. Specially, their multiple reaction categories (anion/cation insertion types of reaction) and higher operating voltage, when compared to traditional conjugated carbonyl materials, underscore their promising prospects. However, the high solubility of nitrogen-centered redox active materials in organic electrolyte and their low electronic conductivity contribute to inferior cycling performance, sluggish reaction kinetics, and limited rate capability. This review provides a detailed overview of nitrogen-centered redox-active materials, encompassing their redox chemistry, solutions to overcome shortcomings, characterization of charge storage mechanisms, and recent progress. Additionally, prospects and directions are proposed for future investigations. It is anticipated that this review will stimulate further exploration of underlying mechanisms and interface chemistry through in situ characterization techniques, thereby promoting the practical application of nitrogen-centered redox-active materials in AMIBs.
Collapse
Affiliation(s)
- Huanhuan Dong
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang, 325035, China
| | - Ning Kang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang, 325035, China
| | - Lin Li
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang, 325035, China
| | - Li Li
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang, 325035, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
2
|
Li J, Huang L, Lv H, Wang J, Wang G, Chen L, Liu Y, Guo W, Peng B, Yu F, Gu T. Investigations on the electrochemical behaviors of hexaazatriphenylene derivative as high-performance electrode for batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Shimizu T, Tanifuji N, Yoshikawa H. Azo Compounds as Active Materials of Energy Storage Systems. Angew Chem Int Ed Engl 2022; 61:e202206093. [DOI: 10.1002/anie.202206093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Takeshi Shimizu
- National Institute of Technology Yonago College 4448 Hikona-cho Yonago Tottori 683-8502 Japan
| | - Naoki Tanifuji
- National Institute of Technology Yonago College 4448 Hikona-cho Yonago Tottori 683-8502 Japan
| | - Hirofumi Yoshikawa
- School of Engineering Kwansei Gakuin University Gakuen 2-1 Sanda 669-1337 Japan
| |
Collapse
|
4
|
Shimizu T, Tanifuji N, Yoshikawa H. Azo Compounds as Active Materials of Energy Storage Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Takeshi Shimizu
- National Institute of Technology Yonago College Depat. of Materials Science JAPAN
| | - Naoki Tanifuji
- National Institute of Technology Yonago College Dept. of Chemistry JAPAN
| | - Hirofumi Yoshikawa
- Kansei Gakuin Daigaku - Kobe Sanda Campus Department of Science and Technology 2-1 Gakuen 669-1337 Sanda JAPAN
| |
Collapse
|
5
|
Zhang W, Huang W, Zhang Q. Organic Materials as Electrodes in Potassium‐Ion Batteries. Chemistry 2021; 27:6131-6144. [DOI: 10.1002/chem.202005259] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/24/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Weisheng Zhang
- School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Weiwei Huang
- School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering City University of Hong Kong Hong Kong 999077 P. R. China
| |
Collapse
|