1
|
Jing X, Ma Y, Wang F, Li W, Wang D. CO
2
‐Derived Oxygen‐Rich Carbon with Enhanced Redox Reactions as a Cathode Material for Aqueous Zn‐Ion Batteries. ChemistrySelect 2022. [DOI: 10.1002/slct.202201133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoyun Jing
- School of Resource and Environmental Science Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy Wuhan University 430072 Wuhan China
| | - Yongsong Ma
- School of Resource and Environmental Science Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy Wuhan University 430072 Wuhan China
| | - Fan Wang
- School of Resource and Environmental Science Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy Wuhan University 430072 Wuhan China
| | - Wei Li
- School of Resource and Environmental Science Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy Wuhan University 430072 Wuhan China
| | - Dihua Wang
- School of Resource and Environmental Science Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy Wuhan University 430072 Wuhan China
| |
Collapse
|
2
|
Carbon-based solid acid derived from lignin and polyvinyl chloride for conversion of xylose and crop wastes to furfural. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Zhang W, Yin J, Wang C, Zhao L, Jian W, Lu K, Lin H, Qiu X, Alshareef HN. Lignin Derived Porous Carbons: Synthesis Methods and Supercapacitor Applications. SMALL METHODS 2021; 5:e2100896. [PMID: 34927974 DOI: 10.1002/smtd.202100896] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/04/2021] [Indexed: 05/12/2023]
Abstract
Lignin, one of the renewable constituents in natural plant biomasses, holds great potential as a sustainable source of functional carbon materials. Tremendous research efforts have been made on lignin-derived carbon electrodes for rechargeable batteries. However, lignin is considered as one of the most promising carbon precursors for the development of high-performance, low-cost porous carbon electrode materials for supercapacitor applications. Yet, these efforts have not been reviewed in detail in the current literature. This review, therefore, offers a basis for the utilization of lignin as a pivotal precursor for the synthesis of porous carbons for use in supercapacitor electrode applications. Lignin chemistry, the synthesis process of lignin-derived porous carbons, and future directions for developing better porous carbon electrode materials from lignin are systematically reviewed. Technological hurdles and approaches that should be prioritized in future research are presented.
Collapse
Affiliation(s)
- Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Chaoyang District, Changchun, 130012, China
| | - Caiwei Wang
- School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Tianhe District, Guangzhou, 510640, China
| | - Lei Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Wenbin Jian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Ke Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Haibo Lin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Chaoyang District, Changchun, 130012, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Hu W, Xiang R, Lin J, Cheng Y, Lu C. Lignocellulosic Biomass-Derived Carbon Electrodes for Flexible Supercapacitors: An Overview. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4571. [PMID: 34443094 PMCID: PMC8401572 DOI: 10.3390/ma14164571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/31/2022]
Abstract
With the increasing demand for high-performance electronic devices in smart textiles, various types of flexible/wearable electronic device (i.e., supercapacitors, batteries, fuel cells, etc.) have emerged regularly. As one of the most promising wearable devices, flexible supercapacitors from a variety of electrode materials have been developed. In particular, carbon materials from lignocellulosic biomass precursor have the characteristics of low cost, natural abundance, high specific surface area, excellent electrochemical stability, etc. Moreover, their chemical structures usually contain a large number of heteroatomic groups, which greatly contribute to the capacitive performance of the corresponding flexible supercapacitors. This review summarizes the working mechanism, configuration of flexible electrodes, conversion of lignocellulosic biomass-derived carbon electrodes, and their corresponding electrochemical properties in flexible/wearable supercapacitors. Technology challenges and future research trends will also be provided.
Collapse
Affiliation(s)
- Wenxin Hu
- Key Laboratory of Textile Science & Technology, Donghua University, Ministry of Education, Shanghai 201620, China; (W.H.); (R.X.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Ruifang Xiang
- Key Laboratory of Textile Science & Technology, Donghua University, Ministry of Education, Shanghai 201620, China; (W.H.); (R.X.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiaxian Lin
- Key Laboratory of Textile Science & Technology, Donghua University, Ministry of Education, Shanghai 201620, China; (W.H.); (R.X.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yu Cheng
- Key Laboratory of Textile Science & Technology, Donghua University, Ministry of Education, Shanghai 201620, China; (W.H.); (R.X.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Chunhong Lu
- Key Laboratory of Textile Science & Technology, Donghua University, Ministry of Education, Shanghai 201620, China; (W.H.); (R.X.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Luo M, Yang K, Zhang D, Liu C, Yang P, Chen W, Zhou X. Lignocellulose-based free-standing hybrid electrode with natural vessels-retained, hierarchically pores-constructed and active materials-loaded for high-performance hybrid oxide supercapacitor. Int J Biol Macromol 2021; 187:903-910. [PMID: 34343583 DOI: 10.1016/j.ijbiomac.2021.07.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/27/2021] [Indexed: 01/22/2023]
Abstract
Lignocellulose including cellulose, lignin, and hemicellulose could be extracted from wood, and has been used to prepare carbon electrode. However, complicated extraction greatly increases preparation cost. To achieve maximum utilization of lignocellulose and avoid complicated extraction, wood with porous structure and good mechanical strength is used as carbon precursor. Additionally, chemical activation is commonly used to create micropores to provide high capacitance, but it brings in natural structure destruction, and generation of wastewater during pickling. Moreover, to achieve desirable energy density, multi-step strategy with long duration is required for loading active materials on carbonized lignocellulose (CL). Herein, a one-step method is developed to prepare a free-standing hybrid CL electrode (CLE) by using Lewis acid in three aspects: (1) as structure protection agent, (2) as activating agent, (3) as active materials donor, which bypasses pickling and further avoids the generation of wastewater. Additionally, natural vessels in wood can not only provide large space for active materials loading, but also act as rapid ions diffusion way, simultaneously confining active materials detachment. Benefiting from the synergistic effect of porous structure and Lewis acid, this work not only makes full utilization of lignocellulose, but also makes CLE exhibit excellent performance in hybrid oxide supercapacitor.
Collapse
Affiliation(s)
- Min Luo
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Kai Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Daotong Zhang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Chaozheng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Pei Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Weimin Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.
| | - Xiaoyan Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.
| |
Collapse
|
6
|
Li K, Wang B, Bolatibieke D, Nan DH, Lu Q. Pyrolysis of Biomass Impregnated With Ammonium Dihydrogen Phosphate for Polygeneration of Phenol and Supercapacitor Electrode Material. Front Chem 2020; 8:436. [PMID: 32509737 PMCID: PMC7248177 DOI: 10.3389/fchem.2020.00436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/27/2020] [Indexed: 02/01/2023] Open
Abstract
A new method was proposed for polygeneration of phenol and supercapacitor electrode material from pyrolysis of biomass impregnated with ammonium dihydrogen phosphate (NH4H2PO4). The pyrolysis experiments were executed to demonstrate the product distributions under different NH4H2PO4-to-poplar (PA-to-PL) ratios and pyrolysis temperatures in a lab-scale device. The results revealed that the phenol yield attained its optimal value of 4.57 wt% with a satisfactory selectivity of 20.09% at 500°C under PA-to-PL ratio of 0.6. The pyrolytic solid product obtained at this condition was then subjected to high temperature activation directly without additional activators to prepare N and P co-doped activated carbon (NPAC) as supercapacitor. The physicochemical analysis of NPAC showed that the N and P contents in NPAC reached 3.75 and 3.65 wt%, respectively. The electrochemical experiments executed in a three-electrode system indicated that the NPAC exhibited promising electrochemical performance with a satisfactory capacitance of 181.3 F g-1 at 1 A g-1.
Collapse
Affiliation(s)
- Kai Li
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing, China
| | - Bo Wang
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing, China
| | - Dana Bolatibieke
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing, China
| | - Dong-Hong Nan
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing, China
| | - Qiang Lu
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing, China
| |
Collapse
|