1
|
Kedruk YY, Contestabile A, Zeng J, Fontana M, Laurenti M, Gritsenko LV, Cicero G, Pirri CF, Abdullin KA. Morphology Effects on Electro- and Photo-Catalytic Properties of Zinc Oxide Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2527. [PMID: 37764556 PMCID: PMC10534315 DOI: 10.3390/nano13182527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Environmental problems are among the most pressing issues in the modern world, including the shortage of clean drinking water partially caused by contamination from various industries and the excessive emission of CO2 primarily from the massive use of fossil fuels. Consequently, it is crucial to develop inexpensive, effective, and environmentally friendly methods for wastewater treatment and CO2 reduction, turning them into useful feedstocks. This study explores a unique method that addresses both challenges by utilizing ZnO, which is recognized as one of the most active semiconductors for photocatalysis, as well as a cost-effective electrocatalyst for the CO2 reduction reaction (CO2RR). Specifically, we investigate the influence of the morphology of various ZnO nanostructures synthesized via different low-cost routes on their photocatalytic properties for degrading the rhodamine-B dye (RhB) and on their electrocatalytic performance for the CO2RR. Our results show that the ZnO lamella morphology achieves the best performance compared to the nanorod and nanoparticle structures. This outcome is likely attributed to the lamella's higher aspect ratio, which plays a critical role in determining the structural, optical, and electrical properties of ZnO.
Collapse
Affiliation(s)
- Yevgeniya Y. Kedruk
- Department of General Physics, Satbayev University, Almaty 050013, Kazakhstan;
| | - Alessandra Contestabile
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (A.C.); (M.F.); (M.L.); (G.C.); (C.F.P.)
| | - Juqin Zeng
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (A.C.); (M.F.); (M.L.); (G.C.); (C.F.P.)
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, 10144 Turin, Italy
| | - Marco Fontana
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (A.C.); (M.F.); (M.L.); (G.C.); (C.F.P.)
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, 10144 Turin, Italy
| | - Marco Laurenti
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (A.C.); (M.F.); (M.L.); (G.C.); (C.F.P.)
| | - Lesya V. Gritsenko
- Department of General Physics, Satbayev University, Almaty 050013, Kazakhstan;
- National Nanotechnology Laboratory of Open Type, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Giancarlo Cicero
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (A.C.); (M.F.); (M.L.); (G.C.); (C.F.P.)
| | - Candido F. Pirri
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (A.C.); (M.F.); (M.L.); (G.C.); (C.F.P.)
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, 10144 Turin, Italy
| | - Khabibulla A. Abdullin
- National Nanotechnology Laboratory of Open Type, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| |
Collapse
|
2
|
A low crystallinity CuO-SnO2/C catalyst for efficient electrocatalytic reduction of CO2. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2022.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Zeng J, Castellino M, Fontana M, Sacco A, Monti NBD, Chiodoni A, Pirri CF. Electrochemical Reduction of CO2 With Good Efficiency on a Nanostructured Cu-Al Catalyst. Front Chem 2022; 10:931767. [PMID: 35873051 PMCID: PMC9300885 DOI: 10.3389/fchem.2022.931767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Carbon monoxide (CO) and formic acid (HCOOH) are suggested to be the most convenient products from electrochemical reduction of CO2 according to techno-economic analysis. To date, tremendous advances have been achieved in the development of catalysts and processes, which make this research topic even more interesting to both academic and industrial sectors. In this work, we report nanostructured Cu-Al materials that are able to convert CO2 to CO and HCOOH with good efficiency. The catalysts are synthesized via a green microwave-assisted solvothermal route, and are composed of Cu2O crystals modified by Al. In KHCO3 electrolyte, these catalysts can selectively convert CO2 to HCOOH and syngas with H2/CO ratios between 1 and 2 approaching one unit faradaic efficiency in a wide potential range. Good current densities of 67 and 130 mA cm−2 are obtained at −1.0 V and −1.3 V vs. reversible hydrogen electrode (RHE), respectively. When switching the electrolyte to KOH, a significant selectivity up to 20% is observed for C2H4 formation, and the current densities achieve 146 and 222 mA cm−2 at −1.0 V and −1.3 V vs. RHE, respectively. Hence, the choice of electrolyte is critically important as that of catalyst in order to obtain targeted products at industrially relevant current densities.
Collapse
Affiliation(s)
- Juqin Zeng
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Turin, Italy
- *Correspondence: Juqin Zeng,
| | - Micaela Castellino
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Marco Fontana
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Adriano Sacco
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Turin, Italy
| | - Nicolò B. D. Monti
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Angelica Chiodoni
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Turin, Italy
| | - Candido F. Pirri
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| |
Collapse
|
4
|
CuZnAl-Oxide Nanopyramidal Mesoporous Materials for the Electrocatalytic CO 2 Reduction to Syngas: Tuning of H 2/CO Ratio. NANOMATERIALS 2021; 11:nano11113052. [PMID: 34835816 PMCID: PMC8618478 DOI: 10.3390/nano11113052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022]
Abstract
Inspired by the knowledge of the thermocatalytic CO2 reduction process, novel nanocrystalline CuZnAl-oxide based catalysts with pyramidal mesoporous structures are here proposed for the CO2 electrochemical reduction under ambient conditions. The XPS analyses revealed that the co-presence of ZnO and Al2O3 into the Cu-based catalyst stabilize the CuO crystalline structure and introduce basic sites on the ternary as-synthesized catalyst. In contrast, the as-prepared CuZn- and Cu-based materials contain a higher amount of superficial Cu0 and Cu1+ species. The CuZnAl-catalyst exhibited enhanced catalytic performance for the CO and H2 production, reaching a Faradaic efficiency (FE) towards syngas of almost 95% at −0.89 V vs. RHE and a remarkable current density of up to 90 mA cm−2 for the CO2 reduction at −2.4 V vs. RHE. The physico-chemical characterizations confirmed that the pyramidal mesoporous structure of this material, which is constituted by a high pore volume and small CuO crystals, plays a fundamental role in its low diffusional mass-transfer resistance. The CO-productivity on the CuZnAl-catalyst increased at more negative applied potentials, leading to the production of syngas with a tunable H2/CO ratio (from 2 to 7), depending on the applied potential. These results pave the way to substitute state-of-the-art noble metals (e.g., Ag, Au) with this abundant and cost-effective catalyst to produce syngas. Moreover, the post-reaction analyses demonstrated the stabilization of Cu2O species, avoiding its complete reduction to Cu0 under the CO2 electroreduction conditions.
Collapse
|
5
|
Mojtahedi S, Serrapede M, Lamberti A, Pirri CF, Heydari-Bafrooei E, Molaei M, Karimipour M. A facile, safe and controllable morphology synthesis of rGO_Cu2O nanocomposite as a binder-free electrode for electrochemical capacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Efficient CO2 Electroreduction on Tin Modified Cuprous Oxide Synthesized via a One-Pot Microwave-Assisted Route. Catalysts 2021. [DOI: 10.3390/catal11080907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bimetallic copper-tin catalysts are considered cost-effective and suitable for large-scale electrochemical conversion of CO2 to valuable products. In this work, a class of tin (Sn) modified cuprous oxide (Cu2O) is simply synthesized through a one-pot microwave-assisted solvothermal method and thoroughly characterized by various techniques. Sn is uniformly distributed on the Cu2O crystals showing a cube-within-cube structure, and CuSn alloy phase emerges at high Sn contents. The atomic ratio of Cu to Sn is found to be crucially important for the selectivity of the CO2 reduction reaction, and a ratio of 11.6 leads to the optimal selectivity for CO. This electrode shows a high current density of 47.2 mA cm−2 for CO formation at −1.0 V vs. the reversible hydrogen electrode and also displays good CO selectivity of 80–90% in a wide potential range. In particular, considerable CO selectivity of 72–81% is achieved at relatively low overpotentials from 240 mV to 340 mV. During the long-term tests, satisfactory stability is observed for the optimal electrode in terms of both electrode activity and CO selectivity. The relatively low price, the fast and scalable synthesis, and the encouraging performance of the proposed material implies its good potential to be implemented in large-scale CO2 electrolyzers.
Collapse
|
7
|
Polymer-metal complexes as emerging catalysts for electrochemical reduction of carbon dioxide. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01585-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractA class of metal-doped polyanilines (PANIs) was synthesized and investigated as electrocatalysts for the carbon dioxide reduction reaction (CO2RR). These materials show good affinity for the electrode substrate and allow to obtain stable binder-free electrodes, avoiding the utilization of expensive ionomer and additives. The emeraldine-base polyaniline (EB-PANI), in absence of metal dopant, shows negligible electrocatalytic activity and selectivity toward the CO2RR. Such behavior significantly improves once EB-PANI is doped with an appropriate cationic metal (Mn, Cu or Sn). In particular, the Sn-PANI outperforms other metal-doped samples, showing a good turnover frequency of 72.2 h−1 for the CO2RR at − 0.99 V vs the reversible hydrogen electrode and thus satisfactory activity of metal single atoms. Moreover, the Sn-PANI also displays impressive stability with a 100% retention of the CO2RR selectivity and an enhanced current density of 4.0 mA cm−2 in a 10-h test. PANI, a relatively low-cost substrate, demonstrates to be easily complexed with different metal cations and thus shows high tailorability. Complexing metal with conductive polymer represents an emerging strategy to realize active and stable metal single-atom catalysts, allowing efficient utilization of metals, especially the raw and precious ones.
Graphic abstract
Collapse
|
8
|
Bejtka K, Monti NBD, Sacco A, Castellino M, Porro S, Farkhondehfal MA, Zeng J, Pirri CF, Chiodoni A. Zn- and Ti-Doped SnO 2 for Enhanced Electroreduction of Carbon Dioxide. MATERIALS 2021; 14:ma14092354. [PMID: 34062766 PMCID: PMC8125724 DOI: 10.3390/ma14092354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023]
Abstract
The electrocatalytic reduction of CO2 into useful fuels, exploiting rationally designed, inexpensive, active, and selective catalysts, produced through easy, quick, and scalable routes, represents a promising approach to face today’s climate challenges and energy crisis. This work presents a facile strategy for the preparation of doped SnO2 as an efficient electrocatalyst for the CO2 reduction reaction to formic acid and carbon monoxide. Zn or Ti doping was introduced into a mesoporous SnO2 matrix via wet impregnation and atomic layer deposition. It was found that doping of SnO2 generates an increased amount of oxygen vacancies, which are believed to contribute to the CO2 conversion efficiency, and among others, Zn wet impregnation resulted the most efficient process, as confirmed by X-ray photoelectron spectroscopy analysis. Electrochemical characterization and active surface area evaluation show an increase of availability of surface active sites. In particular, the introduction of Zn elemental doping results in enhanced performance for formic acid formation, in comparison to un-doped SnO2 and other doped SnO2 catalysts. At −0.99 V versus reversible hydrogen electrode, the total faradaic efficiency for CO2 conversion reaches 80%, while the partial current density is 10.3 mA cm−2. These represent a 10% and a threefold increases for faradaic efficiency and current density, respectively, with respect to the reference un-doped sample. The enhancement of these characteristics relates to the improved charge transfer and conductivity with respect to bare SnO2.
Collapse
Affiliation(s)
- Katarzyna Bejtka
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; (N.B.D.M.); (A.S.); (M.A.F.); (J.Z.); (C.F.P.); (A.C.)
- Correspondence:
| | - Nicolò B. D. Monti
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; (N.B.D.M.); (A.S.); (M.A.F.); (J.Z.); (C.F.P.); (A.C.)
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy; (M.C.); (S.P.)
| | - Adriano Sacco
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; (N.B.D.M.); (A.S.); (M.A.F.); (J.Z.); (C.F.P.); (A.C.)
| | - Micaela Castellino
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy; (M.C.); (S.P.)
| | - Samuele Porro
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy; (M.C.); (S.P.)
| | - M. Amin Farkhondehfal
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; (N.B.D.M.); (A.S.); (M.A.F.); (J.Z.); (C.F.P.); (A.C.)
| | - Juqin Zeng
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; (N.B.D.M.); (A.S.); (M.A.F.); (J.Z.); (C.F.P.); (A.C.)
| | - Candido F. Pirri
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; (N.B.D.M.); (A.S.); (M.A.F.); (J.Z.); (C.F.P.); (A.C.)
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy; (M.C.); (S.P.)
| | - Angelica Chiodoni
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; (N.B.D.M.); (A.S.); (M.A.F.); (J.Z.); (C.F.P.); (A.C.)
| |
Collapse
|
9
|
Abstract
Electrochemical CO2 reduction is a promising carbon capture and utilisation technology. Herein, a continuous flow gas diffusion electrode (GDE)-cell configuration has been studied to convert CO2 via electrochemical reduction under atmospheric conditions. To this purpose, Cu-based electrocatalysts immobilised on a porous and conductive GDE have been tested. Many system variables have been evaluated to find the most promising conditions able to lead to increased production of CO2 reduction liquid products, specifically: applied potentials, catalyst loading, Nafion content, KHCO3 electrolyte concentration, and the presence of metal oxides, like ZnO or/and Al2O3. In particular, the CO productivity increased at the lowest Nafion content of 15%, leading to syngas with an H2/CO ratio of ~1. Meanwhile, at the highest Nafion content (45%), C2+ products formation has been increased, and the CO selectivity has been decreased by 80%. The reported results revealed that the liquid crossover through the GDE highly impacts CO2 diffusion to the catalyst active sites, thus reducing the CO2 conversion efficiency. Through mathematical modelling, it has been confirmed that the increase of the local pH, coupled to the electrode-wetting, promotes the formation of bicarbonate species that deactivate the catalysts surface, hindering the mechanisms for the C2+ liquid products generation. These results want to shine the spotlight on kinetics and transport limitations, shifting the focus from catalytic activity of materials to other involved factors.
Collapse
|
10
|
Biochar-Supported BiOx for Effective Electrosynthesis of Formic Acid from Carbon Dioxide Reduction. CRYSTALS 2021. [DOI: 10.3390/cryst11040363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The electrochemical reduction of carbon dioxide (CO2) to value-added chemicals and fuels has attracted worldwide interest for its potential to address various contemporary global issues such as CO2-related climate change, the earth’s carbon deficit and the energy crisis. In the development of this technology, many efforts have been focused on the design of inexpensive, eco-friendly and effective catalysts. In this work, a bismuth (Bi)-based material was simply synthesized via a scalable method and fully characterized by physical, chemical and electrochemical techniques. The catalyst material consisted of Bi/Bi2O3 nanoparticles and a biochar prevenient from the pyrolysis of brewed coffee waste. It was observed that the surface of the biochar was thoroughly decorated with nanoparticles. Due to its uniform surface, the biochar–BiOx electrode demonstrated good selectivity for CO2 reduction, showing a faradaic efficiency of more than 90% for CO and HCOOH formation in a wide potential range. Particularly, the selectivity for HCOOH reached more than 80% from −0.9 V to −1.3 V vs the reversible hydrogen electrode and peaks at 87%. Besides the selectivity, the production rate of HCOOH also achieved significant values with a maximum of 59.6 mg cm−2 h−1, implying a good application potential for biochar–BiOx material in the conversion of CO2 to HCOOH.
Collapse
|
11
|
Zeng J, Rino T, Bejtka K, Castellino M, Sacco A, Farkhondehfal MA, Chiodoni A, Drago F, Pirri CF. Coupled Copper-Zinc Catalysts for Electrochemical Reduction of Carbon Dioxide. CHEMSUSCHEM 2020; 13:4128-4139. [PMID: 32463150 DOI: 10.1002/cssc.202000971] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Indexed: 05/21/2023]
Abstract
A catalyst plays a key role in the electrochemical reduction of CO2 to valuable chemicals and fuels. Hence, the development of efficient and inexpensive catalysts has attracted great interest from both the academic and industrial communities. In this work, low-cost catalysts coupling Cu and Zn are designed and prepared with a green microwave-assisted route. The Cu to Zn ratio in the catalysts can be easily tuned by adjusting the precursor solutions. The obtained Cu-Zn catalysts are mainly composed of polycrystalline Cu particles and monocrystalline ZnO nanoparticles. The electrodes with optimized Cu-Zn catalysts show enhanced CO production rates of approximately 200 μmol h-1 cm-2 with respect to those with a monometallic Cu or ZnO catalyst under the same applied potential. At the bimetallic electrodes, ZnO-derived active sites are selective for CO formation and highly conductive Cu favors electron transport in the catalyst layer as well as charge transfer at the electrode/electrolyte interface.
Collapse
Affiliation(s)
- Juqin Zeng
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144, Turin, Italy
| | - Telemaco Rino
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Katarzyna Bejtka
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144, Turin, Italy
| | - Micaela Castellino
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Adriano Sacco
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144, Turin, Italy
| | - M Amin Farkhondehfal
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144, Turin, Italy
| | - Angelica Chiodoni
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144, Turin, Italy
| | - Filippo Drago
- NanoChemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Candido F Pirri
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy
| |
Collapse
|