1
|
Kothandam G, Singh G, Guan X, Lee JM, Ramadass K, Joseph S, Benzigar M, Karakoti A, Yi J, Kumar P, Vinu A. Recent Advances in Carbon-Based Electrodes for Energy Storage and Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301045. [PMID: 37096838 PMCID: PMC10288283 DOI: 10.1002/advs.202301045] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Carbon-based nanomaterials, including graphene, fullerenes, and carbon nanotubes, are attracting significant attention as promising materials for next-generation energy storage and conversion applications. They possess unique physicochemical properties, such as structural stability and flexibility, high porosity, and tunable physicochemical features, which render them well suited in these hot research fields. Technological advances at atomic and electronic levels are crucial for developing more efficient and durable devices. This comprehensive review provides a state-of-the-art overview of these advanced carbon-based nanomaterials for various energy storage and conversion applications, focusing on supercapacitors, lithium as well as sodium-ion batteries, and hydrogen evolution reactions. Particular emphasis is placed on the strategies employed to enhance performance through nonmetallic elemental doping of N, B, S, and P in either individual doping or codoping, as well as structural modifications such as the creation of defect sites, edge functionalization, and inter-layer distance manipulation, aiming to provide the general guidelines for designing these devices by the above approaches to achieve optimal performance. Furthermore, this review delves into the challenges and future prospects for the advancement of carbon-based electrodes in energy storage and conversion.
Collapse
Affiliation(s)
- Gopalakrishnan Kothandam
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Jang Mee Lee
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Stalin Joseph
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Mercy Benzigar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| |
Collapse
|
2
|
Suchecki M, Klejna S, Marciszko-Wiąckowska M, Bednarski W, Rosiak N, Lewandowska K, Szaciłowski K. Supercapacitance in graphene oxide materials modified with tetrapyrrole dyes: a mechanistic study. NANOSCALE 2022; 14:8534-8547. [PMID: 35666633 DOI: 10.1039/d2nr02302d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The global increase in mobile technology usage has created a need for better energy storage systems. With standard batteries reaching their technological limits, alternate energy storage methods are gaining momentum. In this study, we demonstrate a cheap and efficient way of building from scratch high-performance supercapacitors based on graphene oxide (GO) functionalized with tetrapyrrole derivatives: porphyrins and phthalocyanines. We present supercapacitors with capacitances about 30 times larger than those of the pristine graphene oxide-based counterparts. Experimental characterisation methods including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-VIS), electron paramagnetic resonance (EPR), and density functional theory (DFT) calculations revealed correlations between the structural, magnetic, electronic and thermodynamic properties of these materials and their performance as supercapacitors. Electrochemical studies indicate the complex and versatile nature of capacitive effects associated with thin layers of supramolecular composites of graphene oxide. The electrical double layer (EDL) capacitance, cation intercalation and faradaic processes are coupled. Moreover, differences in the electronic interactions between GO and tetrapyrrolic modifiers have a profound effect on the observed capacitance. At the same time, these interactions are sufficiently weak to induce only subtle spectral changes, as well as a small increase of the interlayer distance as determined by XRD measurements. The present work offers a viable strategy for manufacturing high-performance supercapacitive materials that are superior to the state of the art nanocarbon-based supercapacitors using benign electrolytes in terms of capacitance per mass unit and have the potential for application in future green energy storage technologies. Our study provides insight into the multifarious origins of supercapacitance beyond the well-known EDL mechanism.
Collapse
Affiliation(s)
- Maciej Suchecki
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland.
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
| | - Sylwia Klejna
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Marianna Marciszko-Wiąckowska
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Natalia Rosiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Kornelia Lewandowska
- Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Konrad Szaciłowski
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland.
| |
Collapse
|
3
|
Badawy IM, Elbanna AM, Ramadan M, Allam NK. Propping the electrochemical impedance spectra at different voltages reveals the untapped supercapacitive performance of materials. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Optimized electrosynthesis approach of Manganese-Nickel- Cobalt chalcogenide nanosheet arrays as binder-free battery materials for asymmetric electrochemical supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Leith GA, Shustova NB. Graphitic supramolecular architectures based on corannulene, fullerene, and beyond. Chem Commun (Camb) 2021; 57:10125-10138. [PMID: 34523630 DOI: 10.1039/d1cc02896k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this Feature Article, we survey the advances made in the field of fulleretic materials over the last five years. Merging the intriguing characteristics of fulleretic molecules with hierarchical materials can lead to enhanced properties of the latter for applications in optoelectronic, biomaterial, and heterogeneous catalysis sectors. As there has been significant growth in the development of fullerene- and corannulene-containing materials, this article will focus on studies performed during the last five years exclusively, and highlight the recent trends in designing fulleretic compounds and understanding their properties, that has enriched the repertoire of carbon-rich functional materials.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
6
|
Multi-walled vanadium oxide nanotubes modified 3D microporous bioderived carbon as novel electrodes for hybrid capacitive deionization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Ghanem LG, Sayed DM, Ahmed N, Ramadan M, Allam NK. Binder-Free Electrospun Ni-Mn-O Nanofibers Embedded in Carbon Shells with Ultrahigh Energy and Power Densities for Highly Stable Next-Generation Energy Storage Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5161-5171. [PMID: 33876646 DOI: 10.1021/acs.langmuir.1c00088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We demonstrate the fabrication of binder-free electrospun nickel-manganese oxides embedded into carbon-shell fibrous electrodes. The morphological and structural properties of the assembled electrode materials were elucidated by high-resolution transmission electron microscopy (HR-TEM), field-emission scanning electron microscopy, and glancing-angle X-ray diffraction. The fibrous structure of the electrodes was retained even after annealing at high temperatures. The X-ray photoelectron spectroscopy and HR-TEM analyses revealed the formation of nickel and manganese oxides in multiple oxidation states (Ni2+, Ni3+, Mn2+, Mn3+, and Mn4+) embedded in the carbon shell. The embedded nickel-manganese oxides into the carbon matrix fibrous electrodes exhibit an excellent capacitance (1082 F/g) in 1 M K2SO4 at 1 A/g and possess a high rate capability of 73% at 5 A/g. The high rate capability and capacitance can be attributed to the presence of carbon cross-linked channels, the binder-free nature of the electrodes, and various oxidation states of the Ni-Mn oxides. The asymmetric supercapacitor device constructed of the as-fabricated nanofibers and the bio-derived microporous carbon as the positive and negative electrodes, respectively, sustains up to 1.9 V with a high specific capacitance at 1.5 A/g of 108 F/g. The nanofibrous//bio-derived device exhibits an outstanding specific energy of 54.2 W h/kg with a high specific power of 1425 W/kg. Interestingly, the tested device maintains a high capacitive retention of 92% upon cycling over 10,000 charging/discharging cycles.
Collapse
Affiliation(s)
- Loujain G Ghanem
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Doha M Sayed
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nashaat Ahmed
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed Ramadan
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
8
|
Ali BA, Biby AH, Allam NK. Towards Cs-ion supercapacitors: Cs intercalation in polymorph MoS2 as a model 2D electrode material. Chem Commun (Camb) 2021; 57:3231-3234. [DOI: 10.1039/d0cc07887e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intercalation of Cs cation has proved to be an effective approach for the enhancement of the energy storage performance in layered-2D materials.
Collapse
Affiliation(s)
- Basant A. Ali
- Energy Materials Laboratory
- School of Sciences and Engineering
- The American University in Cairo
- New Cairo 11835
- Egypt
| | - Ahmed H. Biby
- Energy Materials Laboratory
- School of Sciences and Engineering
- The American University in Cairo
- New Cairo 11835
- Egypt
| | - Nageh K. Allam
- Energy Materials Laboratory
- School of Sciences and Engineering
- The American University in Cairo
- New Cairo 11835
- Egypt
| |
Collapse
|
9
|
Thulasi KM, Manikkoth ST, Paravannoor A, Palantavida S, Bhagiyalakshmi M, Vijayan BK. Facile synthesis of TNT-VO2(M) nanocomposites for high performance supercapacitors. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
El Diwany FA, Ali BA, El Sawy EN, Allam NK. Fullerene C76 as a novel electrocatalyst for VO2+/VO2+ and chlorine evolution inhibitor in all-vanadium redox flow batteries. Chem Commun (Camb) 2020; 56:7569-7572. [DOI: 10.1039/d0cc03544k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report, for the first time, the superior electrocatalytic activity of fullerene C76 towards VO2+/VO2+ in all-vanadium redox flow batteries.
Collapse
Affiliation(s)
- Farah A. El Diwany
- Energy Materials Laboratory
- School of Sciences and Engineering
- The American University in Cairo
- New Cairo 11835
- Egypt
| | - Basant A. Ali
- Energy Materials Laboratory
- School of Sciences and Engineering
- The American University in Cairo
- New Cairo 11835
- Egypt
| | - Ehab N. El Sawy
- Department of Chemistry
- School of Sciences and Engineering
- The American University in Cairo
- New Cairo 11835
- Egypt
| | - Nageh K. Allam
- Energy Materials Laboratory
- School of Sciences and Engineering
- The American University in Cairo
- New Cairo 11835
- Egypt
| |
Collapse
|