1
|
de Oliveira MAC, Brunet Cabré M, Schröder C, Nolan H, Pota F, Behan JA, Barrière F, McKelvey K, Colavita PE. Single-Entity Electrochemistry of N-Doped Graphene Oxide Nanostructures for Improved Kinetics of Vanadyl Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405220. [PMID: 39548927 DOI: 10.1002/smll.202405220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/29/2024] [Indexed: 11/18/2024]
Abstract
N-doped graphene oxides (GO) are nanomaterials of interest as building blocks for 3D electrode architectures for vanadium redox flow battery applications. N- and O-functionalities have been reported to increase charge transfer rates for vanadium redox couples. However, GO synthesis typically yields heterogeneous nanomaterials, making it challenging to understand whether the electrochemical activity of conventional GO electrodes results from a sub-population of GO entities or sub-domains. Herein, single-entity voltammetry studies of vanadyl oxidation at N-doped GO using scanning electrochemical cell microscopy (SECCM) are reported. The electrochemical response is mapped at sub-domains within isolated flakes and found to display significant heterogeneity: small active sites are interspersed between relatively large inert sub-domains. Correlative Raman-SECCM analysis suggests that defect densities are not useful predictors of activity, while the specific chemical nature of defects might be a more important factor for understanding oxidation rates. Finite element simulations of the electrochemical response suggest that active sub-domains/sites are smaller than the mean inter-defect distance estimated from Raman spectra but can display very fast heterogeneous rate constants >1 cm s-1. These results indicate that N-doped GO electrodes can deliver on intrinsic activity requirements set out for the viable performance of vanadium redox flow battery devices.
Collapse
Affiliation(s)
| | | | | | - Hugo Nolan
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland
| | - Filippo Pota
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland
| | - James A Behan
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, Rennes, F-35000, France
| | - Frédéric Barrière
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, Rennes, F-35000, France
| | - Kim McKelvey
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| | | |
Collapse
|
2
|
Garcia M, Sommier A, Michau D, Batsale JC, Chevalier S. Operando Spectroelectrochemical Imaging of Concentration Fields and Tafel Kinetics in Microfluidic Electrochemical Devices. Anal Chem 2024; 96:16487-16492. [PMID: 39388145 DOI: 10.1021/acs.analchem.4c02642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
With the development of microtechnologies for energy conversion and storage, mass transfer and micromolar concentration variations need to be measured at the microscale. These advances need to be accompanied by novel imaging techniques with the capability of achieving high spatial resolution while detecting very small signal variations (less than 0.1%). Thus, in this study, a new microscopy technique is proposed based on a combination of electrochemical impedance spectroscopy (EIS) and visible imaging spectroscopy to measure the concentration fields at the micromolar scale in operando microfluidic fuel cells (MFCs). This technique exploits EIS modulation and Fourier analysis to reduce the noise during concentration field imaging. A mass transfer model in the periodic regime is derived to validate the measurements and to estimate the Tafel kinetics and mass diffusivities during potassium permanganate reduction from only one potential measurement. The proposed imaging method and mathematical framework presented in this study can be used to study binary electrochemical reactions without gas production.
Collapse
Affiliation(s)
- M Garcia
- Arts et Métiers Institute of Technology, CNRS, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
- CNRS, Arts et Métiers Institute of Technology, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
| | - A Sommier
- Arts et Métiers Institute of Technology, CNRS, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
- CNRS, Arts et Métiers Institute of Technology, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
| | - D Michau
- Université de Bordeaux, CNRS, Bordeaux INP, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), F-33600 Pessac, France
| | - J-C Batsale
- Arts et Métiers Institute of Technology, CNRS, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
- CNRS, Arts et Métiers Institute of Technology, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
| | - S Chevalier
- Arts et Métiers Institute of Technology, CNRS, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
- CNRS, Arts et Métiers Institute of Technology, Université de Bordeaux, Bordeaux INP, Institut de Mécanique et d'Ingénierie (I2M), Bâtiment A11, 351 Cours de la Libération, 33405 Talence, France
| |
Collapse
|
3
|
Molina-Serrano A, Luque-Centeno JM, Sebastián D, Arenas LF, Turek T, Vela I, Carrasco-Marín F, Lázaro MJ, Alegre C. Comparison of the Influence of Oxygen Groups Introduced by Graphene Oxide on the Activity of Carbon Felt in Vanadium and Anthraquinone Flow Batteries. ACS APPLIED ENERGY MATERIALS 2024; 7:2779-2790. [PMID: 38606034 PMCID: PMC11005476 DOI: 10.1021/acsaem.3c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 04/13/2024]
Abstract
An increasing number of studies focus on organic flow batteries (OFBs) as possible substitutes for the vanadium flow battery (VFB), featuring anthraquinone derivatives, such as anthraquinone-2,7-disulfonic acid (2,7-AQDS). VFBs have been postulated as a promising energy storage technology. However, the fluctuating cost of vanadium minerals and risky supply chains have hampered their implementation, while OFBs could be prepared from renewable raw materials. A critical component of flow batteries is the electrode material, which can determine the power density and energy efficiency. Yet, and in contrast to VFBs, studies on electrodes tailored for OFBs are scarce. Hence, in this work, we propose the modification of commercial carbon felts with reduced graphene oxide (rGO) and poly(ethylene glycol) for the 2,7-AQDS redox couple and to preliminarily assess its effects on the efficiency of a 2,7-AQDS/ferrocyanide flow battery. Results are compared to those of a VFB to evaluate if the benefits of the modification are transferable to OFBs. The modification of carbon felts with surface oxygen groups introduced by the presence of rGO enhanced both its hydrophilicity and surface area, favoring the catalytic activity toward VFB and OFB reactions. The results are promising, given the improved behavior of the modified electrodes. Parallels are established between the electrodes of both FB technologies.
Collapse
Affiliation(s)
- Antonio
J. Molina-Serrano
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - José M. Luque-Centeno
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - David Sebastián
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - Luis F. Arenas
- Institute
of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany
- Research
Center for Energy Storage Technologies, Clausthal University of Technology. Am Stollen 19 A, 38640 Goslar, Germany
| | - Thomas Turek
- Institute
of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany
- Research
Center for Energy Storage Technologies, Clausthal University of Technology. Am Stollen 19 A, 38640 Goslar, Germany
| | - Irene Vela
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | | | - María J. Lázaro
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - Cinthia Alegre
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| |
Collapse
|
4
|
Wan CTC, Ismail A, Quinn AH, Chiang YM, Brushett FR. Synthesis and Characterization of Dense Carbon Films as Model Surfaces to Estimate Electron Transfer Kinetics on Redox Flow Battery Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1198-1214. [PMID: 36607828 DOI: 10.1021/acs.langmuir.2c03003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Redox flow batteries (RFBs) are a promising electrochemical technology for the efficient and reliable delivery of electricity, providing opportunities to integrate intermittent renewable resources and to support unreliable and/or aging grid infrastructure. Within the RFB, porous carbonaceous electrodes facilitate the electrochemical reactions, distribute the flowing electrolyte, and conduct electrons. Understanding electrode reaction kinetics is crucial for improving RFB performance and lowering costs. However, assessing reaction kinetics on porous electrodes is challenging as their complex structure frustrates canonical electroanalytical techniques used to quantify performance descriptors. Here, we outline a strategy to estimate electron transfer kinetics on planar electrode materials of similar surface chemistry to those used in RFBs. First, we describe a bottom-up synthetic process to produce flat, dense carbon films to enable the evaluation of electron transfer kinetics using traditional electrochemical approaches. Next, we characterize the physicochemical properties of the films using a suite of spectroscopic methods, confirming that their surface characteristics align with those of widely used porous electrodes. Last, we study the electrochemical performance of the films in a custom-designed cell architecture, extracting intrinsic heterogeneous kinetic rate constants for two iron-based redox couples in aqueous electrolytes using standard electrochemical methods (i.e., cyclic voltammetry, electrochemical impedance, and spectroscopy). We anticipate that the synthetic methods and experimental protocols described here are applicable to a range of electrocatalysts and redox couples.
Collapse
Affiliation(s)
- Charles Tai-Chieh Wan
- Joint Center for Energy Storage Research, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Akram Ismail
- Department of Chemical Engineering, University of Rochester, Rochester, New York14627, United States
| | - Alexander H Quinn
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Yet-Ming Chiang
- Joint Center for Energy Storage Research, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Fikile R Brushett
- Joint Center for Energy Storage Research, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
5
|
García-Alcalde L, González Z, Concheso A, Blanco C, Santamaría R. Impact of electrochemical cells configuration on a reliable assessment of active electrode materials for Vanadium Redox Flow Batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
McArdle S, Landon-Lane L, Marshall AT. Using single fibre electrodes to determine the spatial variability of rate constants across carbon felt electrodes. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
7
|
Flow field designs developed by comprehensive CFD model decrease system costs of vanadium redox-flow batteries. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00165-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractDifferent flow field designs are known for vanadium redox-flow batteries (VFB). The best possible design to fulfil a variety of target parameters depends on the boundary conditions. Starting from an exemplary interdigitated flow field design, its channel and land dimensions are varied to investigate the impact on pressure drop, channel volume, flow uniformity and limiting current density. To find a desirable compromise between these several partly contrary requirements, the total costs of the VFB system are evaluated in dependence of the flow field’s dimensions. The total costs are composed of the electrolyte, production and component costs. For those, the production technique (injection moulding or milling), the pump and nominal power density as well as depth of discharge are determined. Finally, flow field designs are achieved, which lead to significantly reduced costs. The presented method is applicable for the design process of other flow fields and types of flow batteries.
Graphical abstract
Collapse
|