1
|
Fu M, Chen Y, Jin W, Dai H, Zhang G, Fan K, Gao Y, Guan L, Chen J, Zhang C, Ma J, Wang C. A donor-acceptor (D-A) conjugated polymer for fast storage of anions. Angew Chem Int Ed Engl 2023:e202317393. [PMID: 38062863 DOI: 10.1002/anie.202317393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Organic electrode materials have attracted a lot interest in batteries in recent years. However, most of them still suffer from low performance such as low electrode potential, slow reaction kinetics, and short cycle life. In this work, we report a strategy of fabricating donor-acceptor (D-A) conjugated polymers for facilitating the charge transfer and therefore accelerating the reaction kinetics by using the copolymer (p-TTPZ) of dihydrophenazine (PZ) and thianthrene (TT) as a proof-of-concept. The D-A conjugated polymer as p-type cathode could store anions and exhibited high discharge voltages (two plateaus at 3.82 V, 3.16 V respectively), a reversible capacity of 152 mAh g-1 at 0.1 A g-1 , excellent rate performance with a high capacity of 124.2 mAh g-1 at 10 A g-1 (≈50 C) and remarkable cyclability. The performance, especially the rate capability was much higher than that of its counterpart homopolymers without D-A structure. As a result, the p-TTPZ//graphite full cells showed a high output voltage (3.26 V), a discharge specific capacity of 139.1 mAh g-1 at 0.05 A g-1 and excellent rate performance. This work provides a novel strategy for developing high performance organic electrode materials through molecular design and will pave a way towards high energy density organic batteries.
Collapse
Affiliation(s)
- Manli Fu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuan Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wenzhou Key Laboratory of Optoelectronic Materials and Devices Application, Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035, China
| | - Weihao Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Huichao Dai
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guoqun Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kun Fan
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wenzhou Key Laboratory of Optoelectronic Materials and Devices Application, Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035, China
| | - Yanbo Gao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Linnan Guan
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jizhou Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chenyang Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Chengliang Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wenzhou Key Laboratory of Optoelectronic Materials and Devices Application, Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035, China
| |
Collapse
|
2
|
Sau S, Samanta SK. Triphenylamine-anthraquinone based donor-acceptor conjugated microporous polymers for photocatalytic hydroxylation of phenylboronic acids. Chem Commun (Camb) 2023; 59:635-638. [PMID: 36533677 DOI: 10.1039/d2cc05334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triphenylamine-based donor-acceptor conjugated microporous polymers, namely PTPA-AQ and PTPA-AM, were synthesized for the first time via Suzuki-Miyaura coupling of tris(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-amine as a donor with 2,6-dibromoanthracene-9,10-dione and 2,2'-(2,6-dibromoanthracene-9,10-diylidene)dimalononitrile acceptors for efficient visible-light driven oxidative hydroxylation of various phenylboronic acids. The dimalononitrile derivative having greater acceptor ability showed tunable photophysical properties of PTPA-AM (lower band gap of 1.47 eV and better exciton separation efficiency) as well as porosity (lower Brunauer-Emmett-Teller (BET) surface area of 43 m2 g-1). PTPA-AQ having higher BET surface area (400 m2 g-1), suitable HOMO-LUMO positions and an optimal band gap (1.94 eV) showed better photocatalytic activity for the hydroxylation with yields up to 96%.
Collapse
Affiliation(s)
- Soumitra Sau
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Suman Kalyan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|