1
|
Mao D, Tan X, Guo L, Zhao T, Fan Z, Song L, Zhang Y, Liu G, Wang H, Chu W. Lithium Antievaporation-Loss Engineering via Sodium/Potassium Doping Enables Superior Electrochemical Performance of High-Nickel Li-Rich Layered Oxide Cathodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19594-19603. [PMID: 35466667 DOI: 10.1021/acsami.2c03456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Low-cost Mn- and Li-rich layered oxides suffer from rapid voltage decay, which can be improved by increasing the nickel content to derive high nickel Li-rich layered oxides (HNLO) but is normally accompanied by reduced capacity and inferior cycling stability. Herein, Na or K ions are successfully doped into the lattice of high nickel Li-rich Li1.2-xMxNi0.32Mn0.48O2 (M = Na, K) layered oxides via a facile expanded graphite template-sacrificed approach. Both Na- and K-doped samples exhibit excellent rate capability and cycling stability compared with the un-doped one. The Na-doped sample shows a capacity retention of 93% after 200 cycles at 1C, which is quite outstanding for HNLO. The greatly improved electrochemical performances are attributed to the increased effective Li content in the lattice via Li antievaporation-loss engineering, the expanded Li slab, the pillaring effect, the increased C2/m component, and the improved electronic conductivity. Different performances by the introduction of sodium and potassium ions may be ascribed to their different ionic radii, which give rise to their different doping behaviors and threshold doping amounts. This work provides a new idea of enhancing electrochemical performance of HNLO by doping proper alien elements to increase the lattice lithium content effectively.
Collapse
Affiliation(s)
- Dongdong Mao
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinghua Tan
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Limin Guo
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tingqiao Zhao
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhengwei Fan
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Luting Song
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Yongxin Zhang
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Guangyao Liu
- China University of Geosciences, Beijing 100083, P. R. China
| | - Hanfu Wang
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Weiguo Chu
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Ji X, Xu Y, Feng H, Wang P, Zhou Y, Song J, Xia Q, Tan Q. Surface LiMn 1.4Ni 0.5Mo 0.1O 4 Coating and Bulk Mo Doping of Li-Rich Mn-Based Li 1.2Mn 0.54Ni 0.13Co 0.13O 2 Cathode with Enhanced Electrochemical Performance for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47659-47670. [PMID: 34592096 DOI: 10.1021/acsami.1c14682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To improve the initial Coulombic efficiency, cycling stability, and rate performance of the Li-rich Mn-based Li1.2Mn0.54Ni0.13Co0.13O2 cathode, the combination of LiMn1.4Ni0.5Mo0.1O4 coating with Mo doping has been successfully carried out by the sol-gel method and subsequent dip-dry process. This strategy buffers the electrodes from the corrosion of electrolyte and enhances the lattice parameter, which could inhibit the oxygen release and maintain the structural stability, thus improving the cycle stability and rate capability. After LiMn1.4Ni0.5Mo0.1O4 modification, the initial discharge capacity reaches 272.4 mAh g-1 with a corresponding initial Coulombic efficiency (ICE) of 84.2% at 0.1C (1C = 250 mAh g-1), far higher than those (221.5 mAh g-1 and 68.9%) of the pristine sample. Besides, the capacity retention of the coated sample is enhanced by up to 66.8% after 200 cycles at 0.1C. Especially, the rate capability of the coated sample is 95.2 mAh g-1 at 5C. XRD, SEM, TEM, XPS, and Raman spectroscopy are adopted to characterize the morphologies and structures of the samples. This coating strategy has been demonstrated to be an effective approach to construct high-performance energy storage devices.
Collapse
Affiliation(s)
- Xueqian Ji
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxing Xu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Hebei Technology Innovation Center of Advanced Energy Materials, Langfang 065001, China
| | - Hailan Feng
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Hebei Technology Innovation Center of Advanced Energy Materials, Langfang 065001, China
| | - Pengfei Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Hebei Technology Innovation Center of Advanced Energy Materials, Langfang 065001, China
| | - Yuncheng Zhou
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiechen Song
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Xia
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Hebei Technology Innovation Center of Advanced Energy Materials, Langfang 065001, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiangqiang Tan
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Hebei Technology Innovation Center of Advanced Energy Materials, Langfang 065001, China
| |
Collapse
|