1
|
Ji L, Wang F, Qi Y, Qiao F, Xiong X, Liu Y. Detection of pathogenic gram-negative bacteria using an antimicrobial peptides-modified bipolar electrode-electrochemiluminescence platform. Mikrochim Acta 2024; 191:648. [PMID: 39367972 DOI: 10.1007/s00604-024-06685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/03/2024] [Indexed: 10/07/2024]
Abstract
Real-time, label-free detection of gram-negative bacteria with high selectivity and sensitivity is demonstrated using a bipolar electrode-electrochemiluminescence (BPE-ECL) platform. This platform utilizes anode luminescence and cathode modification of antimicrobial peptides (AMPs) to effectively capture bacteria. Magainin I, basic AMP from Xenopus skin, boasting an α-helix structure, exhibits a preferential affinity for the surface of gram-negative pathogens. The covalent attachment of the peptide's C-terminal carboxylic acid to the free amines of a previously thiolated linker ensures its secure immobilization onto the surface of the interdigitated gold-plated cathode of BPE. The AMP-modified BPE sensor, when exposed to varying concentrations of gram-negative bacteria, produces reproducible ECL intensities, allowing for the detection of peptide-bacteria interactions within the range 1 to 104 CFU mL-1. Furthermore, this AMP-modified BPE sensor demonstrates a selective capacity to detect Escherichia coli O157:H7 amidst other gram-negative strains, even at a concentration of 1-CFU mL-1. This study underscores the high selectivity of Magainin I in bacterial detection, and the AMP-modified BPE-ECL system holds significant promise for rapid detection of gram-negative bacteria in various applications. The AMP-modified BPE sensor generated reproducible ECL intensity that detected peptide-bacteria interactions in the range 1 to 104 CFU mL-1. The AMP-modified BPE sensor also selectively detected E. coli O157:H7 from other gram-negative strains at a concentration of 1-CFU mL-1. In this paper, AMP demonstrated high selectivity in bacterial detection. The AMP-modified BPE-ECL system prepared has a great potential for application in the field of rapid detection of gram-negative bacteria.
Collapse
Affiliation(s)
- Lei Ji
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China
| | - Fengyang Wang
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China
| | - Yan Qi
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China
| | - Fanglin Qiao
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China
| | - Xiaohui Xiong
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China
| | - Yuanjian Liu
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
2
|
Clark MJ, Moser HJ, Anand RK. Dielectrophoretic capture and electrochemical enzyme-linked immunosorbent assay of single melanoma cells at an array of interlocked spiral bipolar electrodes. ChemElectroChem 2024; 11:e202400182. [PMID: 39483376 PMCID: PMC11526340 DOI: 10.1002/celc.202400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 11/03/2024]
Abstract
Analysis of single cancer cells is critical to obtain accurate patient diagnosis and prognosis. In this work, we report the selective dielectrophoretic capture and electrochemical analysis of single melanoma cells at an array of interlocked spiral bipolar electrodes (iBPEs). Following dielectrophoretic capture, individual melanoma cells are hydrodynamically transferred into picoliter-scale chambers for subsequent analysis. The interlocked spiral end of the iBPE (the sensing pole) is utilized to read out an electrochemical enzyme-linked immunosorbent assay (eELISA), which quantifies the expression of a cell surface antigen, melanoma cell adhesion marker (MCAM). The opposite pole of each BPE is located in a fluidically isolated compartment containing reagents for electrogenerated chemiluminescence (ECL), such that luminescence reports iBPE current. In a preliminary device design, the ECL intensity was insufficient to detect MCAM expression on single cells. To achieve single-cell analysis, we decreased the gap size between the interlocked spirals tenfold (5.0 μm to 0.5 μm), thereby creating a more sensitive biosensor by enhanced redox cycling of the product of eELISA. This work is significant because it allows for the selective isolation and sensitive analysis of individual melanoma cells in a device amenable to point-of-care (POC) application by combining dielectrophoresis (DEP) with interdigitated bipolar electrodes (IDBPEs).
Collapse
Affiliation(s)
- Morgan J Clark
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021
| | - Hanna J Moser
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021
| |
Collapse
|
3
|
Meng X, Pang X, Yang J, Zhang X, Dong H. Recent Advances in Electrochemiluminescence Biosensors for MicroRNA Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307701. [PMID: 38152970 DOI: 10.1002/smll.202307701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Electrochemiluminescence (ECL) as an analytical technology with a perfect combination of electrochemistry and spectroscopy has received considerable attention in bioanalysis due to its high sensitivity and broad dynamic range. Given the selectivity of bio-recognition elements and the high sensitivity of the ECL analysis technique, ECL biosensors are powerful platforms for the sensitive detection of biomarkers, achieving the accurate prognosis and diagnosis of diseases. MicroRNAs (miRNAs) are crucial biomarkers involved in a variety of physiological and pathological processes, whose aberrant expression is often related to serious diseases, especially cancers. ECL biosensors can fulfill the highly sensitive and selective requirements for accurate miRNA detection, prompting this review. The ECL mechanisms are initially introduced and subsequently categorize the ECL biosensors for miRNA detection in terms of the quenching agents. Furthermore, the work highlights the signal amplification strategies for enhancing ECL signal to improve the sensitivity of miRNA detection and finally concludes by looking at the challenges and opportunities in ECL biosensors for miRNA detection.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Xuejiao Pang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Junyan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| |
Collapse
|
4
|
Liu M, Salinas G, Yu J, Cornet A, Li H, Kuhn A, Sojic N. Endogenous and exogenous wireless multimodal light-emitting chemical devices. Chem Sci 2023; 14:10664-10670. [PMID: 37829015 PMCID: PMC10566513 DOI: 10.1039/d3sc03678b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
Multimodal imaging is a powerful and versatile approach that integrates and correlates multiple optical modalities within a single device. This concept has gained considerable attention due to its potential applications ranging from sensing to medicine. Herein, we develop several wireless multimodal light-emitting chemical systems by coupling two light sources based on different physical principles: electrochemiluminescence (ECL) occurring at the electrode interface and a light-emitting diode (LED) switched on by an electrochemically triggered electron flow. Endogenous (thermodynamically spontaneous redox process) and exogenous (requiring an external power source) bipolar electrochemistry acts as a driving force to trigger both light emissions at different wavelengths. The results presented here interconnect optical imaging and electrochemical reactions, providing a novel and so far unexplored alternative to design autonomous hybrid systems with multimodal and multicolor optical readouts for complex bio-chemical systems.
Collapse
Affiliation(s)
- Miaoxia Liu
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Gerardo Salinas
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Jing Yu
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Antoine Cornet
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Haidong Li
- College of Chemistry and Chemical Engineering, Yangzhou University 225002 Yangzhou China
| | - Alexander Kuhn
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| |
Collapse
|
5
|
Mwanza C, Ding SN. Newly Developed Electrochemiluminescence Based on Bipolar Electrochemistry for Multiplex Biosensing Applications: A Consolidated Review. BIOSENSORS 2023; 13:666. [PMID: 37367031 PMCID: PMC10295983 DOI: 10.3390/bios13060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Recently, there has been an upsurge in the extent to which electrochemiluminescence (ECL) working in synergy with bipolar electrochemistry (BPE) is being applied in simple biosensing devices, especially in a clinical setup. The key objective of this particular write-up is to present a consolidated review of ECL-BPE, providing a three-dimensional perspective incorporating its strengths, weaknesses, limitations, and potential applications as a biosensing technique. The review encapsulates critical insights into the latest and novel developments in the field of ECL-BPE, including innovative electrode designs and newly developed, novel luminophores and co-reactants employed in ECL-BPE systems, along with challenges, such as optimization of the interelectrode distance, electrode miniaturization and electrode surface modification for enhancing sensitivity and selectivity. Moreover, this consolidated review will provide an overview of the latest, novel applications and advances made in this field with a bias toward multiplex biosensing based on the past five years of research. The studies reviewed herein, indicate that the technology is rapidly advancing at an outstanding purse and has an immense potential to revolutionize the general field of biosensing. This perspective aims to stimulate innovative ideas and inspire researchers alike to incorporate some elements of ECL-BPE into their studies, thereby steering this field into previously unexplored domains that may lead to unexpected, interesting discoveries. For instance, the application of ECL-BPE in other challenging and complex sample matrices such as hair for bioanalytical purposes is currently an unexplored area. Of great significance, a substantial fraction of the content in this review article is based on content from research articles published between the years 2018 and 2023.
Collapse
Affiliation(s)
- Christopher Mwanza
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Chemistry Department, University of Zambia, Lusaka 10101, Zambia
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Rahn KL, Peramune U, Zhang T, Anand RK. Label-Free Electrochemical Methods for Disease Detection. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:49-69. [PMID: 36854209 DOI: 10.1146/annurev-anchem-091622-085754] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Label-free electrochemical biosensing leverages the advantages of label-free techniques, low cost, and fewer user steps, with the sensitivity and portability of electrochemical analysis. In this review, we identify four label-free electrochemical biosensing mechanisms: (a) blocking the electrode surface, (b) allowing greater access to the electrode surface, (c) changing the intercalation or electrostatic affinity of a redox probe to a biorecognition unit, and (d) modulating ion or electron transport properties due to conformational and surface charge changes. Each mechanism is described, recent advancements are summarized, and relative advantages and disadvantages of the techniques are discussed. Furthermore, two avenues for gaining further diagnostic information from label-free electrochemical biosensors, through multiplex analysis and incorporating machine learning, are examined.
Collapse
Affiliation(s)
- Kira L Rahn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
- Department of Chemistry, Iowa State University, Ames, Iowa, USA;
| | - Umesha Peramune
- Department of Chemistry, Iowa State University, Ames, Iowa, USA;
| | - Tianyi Zhang
- Department of Chemistry, Iowa State University, Ames, Iowa, USA;
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University, Ames, Iowa, USA;
| |
Collapse
|
7
|
Pence M, Rodríguez O, Lukhanin NG, Schroeder CM, Rodríguez-López J. Automated Measurement of Electrogenerated Redox Species Degradation Using Multiplexed Interdigitated Electrode Arrays. ACS MEASUREMENT SCIENCE AU 2023; 3:62-72. [PMID: 36817007 PMCID: PMC9936799 DOI: 10.1021/acsmeasuresciau.2c00054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 06/18/2023]
Abstract
Characterizing the decomposition of electrogenerated species in solution is essential for applications involving electrosynthesis, homogeneous electrocatalysis, and energy storage with redox flow batteries. In this work, we present an automated, multiplexed, and highly robust platform for determining the rate constant of chemical reaction steps following electron transfer, known as the EC mechanism. We developed a generation-collection methodology based on microfabricated interdigitated electrode arrays (IDAs) with variable gap widths on a single device. Using a combination of finite-element simulations and statistical analysis of experimental data, our results show that the natural logarithm of collection efficiency is linear with respect to gap width, and this quantitative analysis is used to determine the decomposition rate constant of the electrogenerated species (k c). The integrated IDA method is used in a series of experiments to measure k c values between ∼0.01 and 100 s-1 in aqueous and nonaqueous solvents and at concentrations as high as 0.5 M of the redox-active species, conditions that are challenging to address using standard methods based on conventional macroelectrodes. The versatility of our approach allows for characterization of a wide range of reactions including intermolecular cyclization, hydrolysis, and the decomposition of candidate molecules for redox flow batteries at variable concentration and water content. Overall, this new experimental platform presents a straightforward automated method to assess the degradation of redox species in solution with sufficient flexibility to enable high-throughput workflows.
Collapse
Affiliation(s)
- Michael
A. Pence
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois61801, United States
- Joint
Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Oliver Rodríguez
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois61801, United States
- Joint
Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Nikita G. Lukhanin
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois61801, United States
- Joint
Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Charles M. Schroeder
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana—Champaign, Urbana, Illinois61801, United States
- Department
of Materials Science and Engineering, University
of Illinois at Urbana—Champaign, Urbana, Illinois61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois61801, United States
- Joint
Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Joaquín Rodríguez-López
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois61801, United States
- Joint
Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| |
Collapse
|
8
|
Salinas G, Bonetti G, Cirilli R, Benincori T, Kuhn A, Arnaboldi S. Wireless light-emitting device for the determination of chirality in real samples. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|