1
|
Hawkins BC, Chalker JM, Coote ML, Bissember AC. Electrochemically Generated Carbocations in Organic Synthesis. Angew Chem Int Ed Engl 2024; 63:e202407207. [PMID: 39075778 DOI: 10.1002/anie.202407207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
This Minireview examines a selection of case studies that showcase distinctive and enabling electrochemical approaches that have allowed for the generation and reaction of carbocation intermediates under mild conditions. Particular emphasis is placed on the progress that has been made in this area of organic synthesis and polymer chemistry over the past decade.
Collapse
Affiliation(s)
- Bill C Hawkins
- Department of Chemistry, University of Otago, 9054, Dunedin, Otago, New Zealand
| | - Justin M Chalker
- Institute for Nanoscale Science and Technology, Flinders University, 5042, Adelaide, South Australia, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, Flinders University, 5042, Adelaide, South Australia, Australia
| | - Alex C Bissember
- School of Natural Sciences-Chemistry, University of Tasmania, 7001, Hobart, Tasmania, Australia
| |
Collapse
|
2
|
Wang LN, Wang XJ, Jin KX, Ni ZR, Cai WP, Lin GC, Wang X, Chen GL, Yang Y, Huang YQ, Qu XB, Sun HJ, Chen Z, Cao SH. Compact In Situ Electrochemical NMR with Wireless and Anti-interference Strategy in Multiscenario Applications. Anal Chem 2024; 96:10911-10919. [PMID: 38916969 DOI: 10.1021/acs.analchem.4c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The integration of electrochemistry with nuclear magnetic resonance (NMR) spectroscopy recently offers a powerful approach to understanding oxidative metabolism, detecting reactive intermediates, and predicting biological activities. This combination is particularly effective as electrochemical methods provide excellent mimics of metabolic processes, while NMR spectroscopy offers precise chemical analysis. NMR is already widely utilized in the quality control of pharmaceuticals, foods, and additives and in metabolomic studies. However, the introduction of additional and external connections into the magnet has posed challenges, leading to signal deterioration and limitations in routine measurements. Herein, we report an anti-interference compact in situ electrochemical NMR system (AICISENS). Through a wireless strategy, the compact design allows for the independent and stable operation of electrochemical NMR components with effective interference isolation. Thus, it opens an avenue toward easy integration into in situ platforms, applicable not only to laboratory settings but also to fieldwork. The operability, reliability, and versatility were validated with a series of biomimetic assessments, including measurements of microbial electrochemical systems, functional foods, and simulated drug metabolisms. The robust performance of AICISENS demonstrates its high potential as a powerful analytical tool across diverse applications.
Collapse
Affiliation(s)
- Li-Na Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Xi-Ji Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Ke-Xin Jin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Zu-Rong Ni
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Wei-Peng Cai
- Xiamen Municipal Center for Disease Control and Prevention, Xiamen 361021, China
| | - Guo-Chun Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Guo-Long Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Yu Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Yu-Qing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Xiao-Bo Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Hui-Jun Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Zhong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Shuo-Hui Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
3
|
Luo R, Janssen HJWG, Kentgens APM, Zhao EW. A parallel line probe for spatially selective electrochemical NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 361:107666. [PMID: 38537481 DOI: 10.1016/j.jmr.2024.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/03/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
In situ NMR is a valuable tool for studying electrochemical devices, including redox flow batteries and electrocatalytic reactors, capable of detecting reaction intermediates, metastable states, time evolution of processes or monitoring stability as a function of electrochemical conditions. Here we report a parallel line detector for spatially selective in situ electrochemical NMR spectroscopy. The detector consists of 17 copper wires and is doubly tuned to 1H/19F and X nuclei ranging from 63Cu (106.1 MHz) to 7Li (155.5 MHz). The flat geometry of the parallel line detector allows its insertion into a high electrode surface-to-volume electrochemical flow reactor, enabling a detector-in-a-reactor design. This integrated device is named "eReactor NMR probe". Combined with B1-selective pulse sequences, selective detection of the nuclei at the electrode-electrolyte interface, that is within a distance of 800 μm from the electrode surface, has been achieved. The selective detection of 7Li and 19F nuclei is demonstrated using two electrolytes, LiCl and LiBF4 solutions, respectively. A good B1 homogeneity with an 810° to 90° pulse intensity ratio of 68-72 % was achieved. Using electrochemical plating of lithium metal as a model reaction, we further demonstrated the operando functionality of the probe. The new eReactor NMR probe offers a general method for studying flow electrochemistry, and we envision applications in a wide range of environmentally relevant energy systems, for example, Li metal batteries, electrochemical ammonia synthesis, carbon dioxide capture and reduction, redox flow batteries, fuel cells, water desalination, lignin oxidation etc.
Collapse
Affiliation(s)
- Ruipeng Luo
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Hans J W G Janssen
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Arno P M Kentgens
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Evan Wenbo Zhao
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Flow NMR system development for real-time in situ multiple detection of direct methanol fuel cell exhausts. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
5
|
Ferreira da Silva P, Santana Ribeiro T, Ferreira Gomes B, Tiago dos Santos Tavares da Silva G, Silva Lobo CM, Carmo M, Ribeiro C, Bernardes Filho R, Roth C, Colnago LA. Miniaturized Carbon Fiber Paper Electrodes for In Situ High Resolution NMR Analyses. Anal Chem 2022; 94:15223-15230. [DOI: 10.1021/acs.analchem.2c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pollyana Ferreira da Silva
- Instituto de QuÃmica de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590São Carlos, SP, Brazil
- Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428Jülich, Germany
| | - Tatiana Santana Ribeiro
- Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428Jülich, Germany
- Department of Natural Science, Mathematics and Education, Federal University of São Carlos, Rodovia Anhanguera, Km 174, SP-330, 13600-970Araras, SP, Brazil
| | - Bruna Ferreira Gomes
- Electrochemical Process Engineering, University of Bayreuth, Universitätsstraße 30, 95447Bayreuth, Germany
| | | | - Carlos Manuel Silva Lobo
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569Stuttgart, Germany
| | - Marcelo Carmo
- Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428Jülich, Germany
| | - Cauê Ribeiro
- Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428Jülich, Germany
- Embrapa Instrumentação, Rua XV de Novembro, 1452, 13561-206São Carlos, SP, Brazil
| | | | - Christina Roth
- Electrochemical Process Engineering, University of Bayreuth, Universitätsstraße 30, 95447Bayreuth, Germany
| | - Luiz Alberto Colnago
- Embrapa Instrumentação, Rua XV de Novembro, 1452, 13561-206São Carlos, SP, Brazil
| |
Collapse
|
6
|
Schatz M, Jovanovic S, Eichel RA, Granwehr J. Quantifying local pH changes in carbonate electrolyte during copper-catalysed [Formula: see text] electroreduction using in operando [Formula: see text] NMR. Sci Rep 2022; 12:8274. [PMID: 35585102 PMCID: PMC9117298 DOI: 10.1038/s41598-022-12264-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022] Open
Abstract
The electrochemical carbon dioxide reduction on copper attracted considerable attention within the last decade, since Cu is the only elemental transition metal that catalyses the formation of short-chain hydrocarbons and alcohols. Research in this field is mainly focused on understanding the reaction mechanism in terms of adsorbates and intermediates. Furthermore, dynamic changes in the micro-environment of the catalyst, i.e. local pH and [Formula: see text] concentration values, play an equivalently important role in the selectivity of product formation. In this study, we present an in operando [Formula: see text] nuclear magnetic resonance technique that enables the simultaneous measurement of pH and [Formula: see text] concentration in electrode vicinity during electroreduction. The influence of applied potential and buffer capacity of the electrolyte on the formation of formate is demonstrated. Theoretical considerations are confirmed experimentally and the importance of the interplay between catalyst and electrolyte is emphasised.
Collapse
Affiliation(s)
- Michael Schatz
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Sven Jovanovic
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rüdiger-A. Eichel
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Josef Granwehr
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
7
|
Ferreira da Silva P, Ferreira Gomes B, Silva Lobo CM, Carmo M, Roth C, Colnago LA. Composite Graphite-Epoxy Electrodes for In Situ Electrochemistry Coupling with High Resolution NMR. ACS OMEGA 2022; 7:4991-5000. [PMID: 35187316 PMCID: PMC8851621 DOI: 10.1021/acsomega.1c05823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
The in situ coupling between electrochemistry and spectrometric techniques can help in the identification and quantification of the compounds produced and consumed during electrochemical reactions. The combination of electrochemistry with nuclear magnetic resonance is quite attractive in this respect, but it has some challenges to be addressed, namely, the reduction in the quality of the NMR signal when the metallic electrodes are placed close to or in the detection region. Since NMR is not a passive technique, the convective effect of the magnetic force (magnetoelectrolysis), which acts by mixing the solution and increasing the mass transport, has to be considered. In seeking to solve the aforementioned problems, we developed a system of miniaturized electrodes inside a 5 mm NMR tube (outer diameter); the working and counter electrodes were prepared with a mixture of graphite powder and epoxy resin. To investigate the performance of the electrodes, the benzoquinone reduction to hydroquinone and the isopropanol oxidation to acetone were monitored. To monitor the alcohol oxidation reaction, the composite graphite-epoxy electrode (CGEE) surface was modified through platinization. The electrode was efficient for in situ monitoring of the aforementioned reactions, when positioned 1 mm above the detection region of the NMR spectrometer. The magnetoelectrolysis effect acts by stirring the solution and increases the reaction rate of the reduction of benzoquinone, because this reaction is limited by mass transport, while no effect on the reaction rate is observed for the isopropanol oxidation reaction.
Collapse
Affiliation(s)
- Pollyana Ferreira da Silva
- Instituto
de QuÃmica de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590, São Carlos, SP Brazil
| | - Bruna Ferreira Gomes
- Instituto
de QuÃmica de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590, São Carlos, SP Brazil
| | - Carlos Manuel Silva Lobo
- Instituto
de QuÃmica de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590, São Carlos, SP Brazil
| | - Marcelo Carmo
- Forschungszentrum
Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Christina Roth
- Electrochemical
Process Engineering, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Luiz Alberto Colnago
- Embrapa
Instrumentação, Rua XV de Novembro, 1452, 13560-970 São Carlos, SP Brazil
| |
Collapse
|
8
|
Liu M, Ni ZR, Sun HJ, Cao SH, Chen Z. In Situ Real-Time Quantitative Determination in Electrochemical Nuclear Magnetic Resonance Spectroscopy. SENSORS 2021; 22:s22010282. [PMID: 35009824 PMCID: PMC8749650 DOI: 10.3390/s22010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
For the purpose of acquiring highly sensitive and differential spectra in in situ electrochemical nuclear magnetic resonance (EC-NMR) spectroscopy, uniform distributions of amplitudes and phases of radio frequency (RF) fields in the sample are needed for consistent flip angles of all nuclei under scrutiny. However, intrinsic electromagnetic incompatibility exists between such requirements with electric properties of the conductive material in an electrolytic cell, including metallic electrodes and ionic electrolytes. This proposed work presents the adverse repercussions of gradually varying electrolyte conductivity, which is strongly associated with the change of ion concentrations in a real-time electrochemical reaction, on spatial distributions of RF field amplitude and phase in the detective zone of an NMR probe coil. To compensate for such a non-linear trend of the spatial dependent distribution, we eliminate different excitation effects of the RF field on the build-in external standard and the electrolyte both situated in nearly the same detection area, as well as promote the greater accuracy of quantitative determination of reactant concentrations. The reliability and effectiveness of the improved in situ EC-qNMR (quantitative NMR) method are confirmed by the real-time monitoring of the electrochemical advanced oxidation process for phenol, in which instant concentrations of reactants and products are detected simultaneously to verify the degradation reaction scheme of phenol.
Collapse
|