1
|
Tan Z, Li K, Gu Y, Nan Z, Wang W, Sun L, Mao B, Yan J. Unconventional Electrochemical Behaviors of Cu Underpotential Deposition in a Chloride-Based Deep Eutectic Solvent: High Underpotential Shift and Low Coverage. Anal Chem 2023; 95:6458-6466. [PMID: 37027511 DOI: 10.1021/acs.analchem.3c00637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
The (5 × 5) Moiré pattern resulting from coadsorption of Cu atoms and chloride ions on the Au(111) electrode is one of the most classical structures for underpotential deposition (UPD) in electrochemical surface science. Although two models have been proposed to describe the pattern, the details of the structure remain ambiguous and controversial, leading to a question that remains to be answered. In this work, we investigate the UPD behaviors of Cu on the Au(111) electrode in a chloride-based deep eutectic solvent ethaline by in situ scanning tunneling microscopy (STM). Benefiting from the properties of the ultraconcentrated electrolyte, we directly image not only Cu but also Cl adlayers by finely tuning tunneling conditions. The structure is unambiguously determined for both Cu and Cl adlayers, where an incommensurate Cu layer is adsorbed on the Au(111) surface with a Cu coverage of 0.64, while the Cl coverage is 0.32 (only half of the expected value); i.e., the atomic arrangement of the observed (5 × 5) Moiré pattern in ethaline matches neither of the models proposed in the literature. Meanwhile, STM results confirm the origin of the cathodic peak in the cyclic voltammogram, which indicates that the underpotential shift of Cu UPD in ethaline indeed increases by ca. 0.40 V compared to its counterpart in a sulfuric acid solution, resulting in a significant deviation from the linear relation between the underpotential shift and the difference in work functions proposed in the literature. The unconventional electrochemical behaviors of Cu UPD reveal the specialty of both the bulk and the interface in the chloride-based deep eutectic solvent.
Collapse
Affiliation(s)
- Zhuo Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Kaixuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Ziang Nan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Weiwei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Lan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Wu JD, Ding Y, Zhu F, Gu Y, Wang WW, Sun L, Mao BW, Yan JW. The Role of Water Content of Deep Eutectic Solvent Ethaline in the Anodic Process of Gold Electrode. Molecules 2023; 28:molecules28052300. [PMID: 36903545 PMCID: PMC10005209 DOI: 10.3390/molecules28052300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Traditional coupling of ligands for gold wet etching makes large-scale applications problematic. Deep eutectic solvents (DESs) are a new class of environment-friendly solvents, which could possibly overcome the shortcomings. In this work, the effect of water content on the Au anodic process in DES ethaline was investigated by combining linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Meanwhile, we employed atomic force microscopy (AFM) to image the evolution of the surface morphology of the Au electrode during its dissolution and passivation process. The obtained AFM data help to explain the observations about the effect of water content on the Au anodic process from the microscopic perspective. High water contents make the occurrence of anodic dissolution of gold at higher potential, but enhances the rate of the electron transfer and gold dissolution. AFM results reveal the occurrence of massive exfoliation, which confirms that the gold dissolution reaction is more violent in ethaline with higher water contents. In addition, AFM results illustrate that the passive film and its average roughness could be tailored by changing the water content of ethaline.
Collapse
Affiliation(s)
- Jie-Du Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Feng Zhu
- College of Chemistry and Bioengineering, Yichun University, Yichun 336000, China
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei-Wei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (B.-W.M.); (J.-W.Y.)
| | - Jia-Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (B.-W.M.); (J.-W.Y.)
| |
Collapse
|
3
|
Zaytsev OI, Ehrenburg MR, Molodkina EB, Broekmann P, Rudnev AV. Over- and underpotential deposition of copper from a deep eutectic solvent: Pt(1 1 1) single crystal versus polycrystalline Pt substrates. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Geng T, Schick BW, Uhl M, Kuehne AJC, Kibler LA, Ceblin MU, Jacob T. Influence of Chloride and Nitrate Anions on Copper Electrodeposition onto Au(111) from Deep Eutectic Solvents. ChemElectroChem 2022. [DOI: 10.1002/celc.202101263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tanja Geng
- Ulm University: Universitat Ulm Institut für Elektrochemie GERMANY
| | | | - Matthias Uhl
- Ulm University: Universitat Ulm Institute of Electrochemistry GERMANY
| | - Alexander J. C. Kuehne
- Ulm University: Universitat Ulm Institute of Organic and Macromolecular Chemistry GERMANY
| | - Ludwig A. Kibler
- Ulm University: Universitat Ulm Institut für Elektrochemie GERMANY
| | - Maximilian Urs Ceblin
- Ulm University: Universitat Ulm Institut für Elektrochemie Albert-Einstein-Allee 47 89081 Ulm GERMANY
| | - Timo Jacob
- Ulm University: Universitat Ulm Institut für Elektrochemie GERMANY
| |
Collapse
|
5
|
Liu S, Tan Z, Wu J, Mao B, Yan J. Electrochemical interfaces in ionic liquids/deep eutectic solvents incorporated with water: A review. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shuai Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Zhuo Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Jiedu Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| |
Collapse
|