1
|
Arshi S, Madane K, Shortall K, Hailo G, Alvarez-Malmagro J, Xiao X, Szymanńska K, Belochapkine S, Ranade VV, Magner E. Controlled Delivery of H 2O 2: A Three-Enzyme Cascade Flow Reactor for Peroxidase-Catalyzed Reactions. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:10555-10566. [PMID: 39027729 PMCID: PMC11253098 DOI: 10.1021/acssuschemeng.4c03220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Peroxidases are promising catalysts for oxidation reactions, yet their practical utility has been hindered by the fact that they require hydrogen peroxide (H2O2), which at high concentrations can cause deactivation of enzymes. Practical processes involving the use of peroxidases require the frequent addition of low concentrations of H2O2. In situ generation of H2O2 can be achieved using oxidase-type enzymes. In this study, a three-enzyme cascade system comprised of a H2O2 generator (glucose oxidase (GOx)), H2O2-dependent enzymes (chloroperoxidase (CPO) or horseradish peroxidase (HRP)), and a H2O2 scavenger (catalase (CAT)) was deployed in a flow reactor. Immobilization of the enzymes on a graphite rod was achieved through electrochemically driven physical adsorption, followed by cross-linking with glutaraldehyde. Modeling studies indicated that the flow in the reactor was laminar (Reynolds number, R e < 2000) and was nearly fully developed at the midplane of the annular reactor. Immobilized CAT and GOx displayed good stability, retaining 79% and 84% of their initial activity, respectively, after three cycles of operation. Conversely, immobilized CPO exhibited a considerable reduction in activity after one use, retaining only 30% of its initial activity. The GOx-CAT-GRE system enabled controlled delivery of H2O2 in a more stable manner with a 4-fold enhancement in the oxidation of indole compared to the direct addition of H2O2. Using CPO in solution coupled with GOx-CAT-GRE yields of 90% for the oxidation of indole to 2-oxyindole and of 93% and 91% for the chlorination of thymol and carvacrol, respectively.
Collapse
Affiliation(s)
- Simin Arshi
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Ketan Madane
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Kim Shortall
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Goran Hailo
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Julia Alvarez-Malmagro
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Xinxin Xiao
- Department
of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Katarzyna Szymanńska
- Department
of Chemical Engineering and Process Design, Silesian University of Technology, Gliwice 44-100, Poland
| | - Serguei Belochapkine
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Vivek V. Ranade
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Edmond Magner
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
2
|
Silina YE. One-step electrodeposited hybrid nanofilms in amperometric biosensor development. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2424-2443. [PMID: 38592715 DOI: 10.1039/d4ay00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
This review summarizes recent developments in amperometric biosensors, based on one-step electrodeposited organic-inorganic hybrid layers, used for analysis of low molecular weight compounds. The factors affecting self-assembly of one-step electrodeposited films, methods for verifying their composition, advantages, limitations and approaches affecting the electroanalytical performance of amperometric biosensors based on organic-inorganic hybrid layers were systemized. Moreover, issues related to the formation of one-step organic-inorganic hybrid functional layers with different structures in biosensors produced under the same electrodeposition parameters are discussed. The systemized dependencies can support the preliminary choice of functional sensing layers with architectures tuned for specific biotechnology and life science applications. Finally, the capabilities of one-step electrodeposition of organic-inorganic hybrid functional films beyond amperometric biosensors were highlighted.
Collapse
Affiliation(s)
- Yuliya E Silina
- Institute of Biochemistry, Saarland University, Campus B 2.2, Room 317, Saarbrücken, Germany.
| |
Collapse
|