1
|
Mun DG, Bhat FA, Ding H, Madden BJ, Natesampillai S, Badley AD, Johnson KL, Kelly RT, Pandey A. Optimizing single cell proteomics using trapped ion mobility spectrometry for label-free experiments. Analyst 2023; 148:3466-3475. [PMID: 37395315 PMCID: PMC10370902 DOI: 10.1039/d3an00080j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/10/2023] [Indexed: 07/04/2023]
Abstract
Although single cell RNA-seq has had a tremendous impact on biological research, a corresponding technology for unbiased mass spectrometric analysis of single cells has only recently become available. Significant technological breakthroughs including miniaturized sample handling have enabled proteome profiling of single cells. Furthermore, trapped ion mobility spectrometry (TIMS) in combination with parallel accumulation-serial fragmentation operated in data-dependent acquisition mode (DDA-PASEF) allowed improved proteome coverage from low-input samples. It has been demonstrated that modulating the ion flux in TIMS affects the overall performance of proteome profiling. However, the effect of TIMS settings on the analysis of low-input samples has been less investigated. Thus, we sought to optimize the conditions of TIMS with regard to ion accumulation/ramp times and ion mobility range for low-input samples. We observed that an ion accumulation time of 180 ms and monitoring a narrower ion mobility range from 0.7 to 1.3 V s cm-2 resulted in a substantial gain in the depth of proteome coverage and in detecting proteins with low abundance. We used these optimized conditions for proteome profiling of sorted human primary T cells, which yielded an average of 365, 804, 1116, and 1651 proteins from single, five, ten, and forty T cells, respectively. Notably, we demonstrated that the depth of proteome coverage from a low number of cells was sufficient to delineate several essential metabolic pathways and the T cell receptor signaling pathway. Finally, we showed the feasibility of detecting post-translational modifications including phosphorylation and acetylation from single cells. We believe that such an approach could be applied to label-free analysis of single cells obtained from clinically relevant samples.
Collapse
Affiliation(s)
- Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA.
| | - Firdous A Bhat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA.
| | - Husheng Ding
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA.
| | | | | | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA.
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Blood-related proteomics. J Proteomics 2009; 73:483-507. [PMID: 19567275 DOI: 10.1016/j.jprot.2009.06.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/17/2009] [Accepted: 06/20/2009] [Indexed: 12/12/2022]
Abstract
Blood-related proteomics is an emerging field, recently gaining momentum. Indeed, a wealth of data is now available and a plethora of groups has contributed to add pieces to the jigsaw puzzle of protein complexity within plasma and blood cells. In this review article we purported to sail across the mare magnum of the actual knowledge in this research endeavour. The main strides in proteomic investigations on red blood cells, platelets, plasma and white blood cells are hereby presented in a chronological order. Moreover, a glance is given at prospective studies which promise to shift the focus of attention from the end product to its provider, the donor, in a sort of Kantian "Copernican revolution". A well-rounded portrait of the usefulness of proteomics in blood-related research is accurately given. In particular, proteomic tools could be adopted to follow the main steps of the blood-banking production processes (a comparison of collection methods, pathogen inactivation techniques, storage protocols). Thus proteomics has been recently transformed from a mere basic-research extremely-expensive toy into a dramatically-sensitive and efficient eye-lens to either delve into the depths of the molecular mechanisms of blood and blood components or to establish quality parameters in the blood-banking production chain totally anew.
Collapse
|