1
|
Ahmad HM, Alafari HA, Fiaz S, Alshaya DS, Toor S, Ijaz M, Rasool N, Attia KA, Zaynab M, Azmat S, Abushady AM, Chen Y. Genome-wide comparison and identification of myosin gene family in Arabidopsis thaliana and Helianthus annuus. Heliyon 2022; 8:e12070. [PMID: 36561675 PMCID: PMC9763749 DOI: 10.1016/j.heliyon.2022.e12070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Myosins are essential components of organelle trafficking in all the eukaryotic cells. Myosin driven movement plays a vital role in the development of pollen tubes, root hairs and root tips of flowering plants. The present research characterized the myosin genes in Arabidopsis thaliana and Helianthus annuus by using different computational tools. We discovered a total of 50 myosin genes and their splice variants in both pant species. Phylogenetic analysis indicated that myosin genes were divided into four subclasses. Chromosomal location revealed that myosin genes were located on all five chromosomes in A. thaliana, whereas they were present on nine chromosomes in H. annuus. Conserved motifs showed that conserved regions were closely similar within subgroups. Gene structure analysis showed that Atmyosin2.2 and Atmyosin2.3 had the highest number of introns/exons. Gene ontology analysis indicated that myosin genes were involved in vesicle transport along actin filament and cytoskeleton trafficking. Expression analysis showed that expression of myosin genes was higher during the flowering stage as compared to the seedling and budding stages. Tissue specific expression indicated that HanMYOSIN11.2, HanMYOSIN16.2 were highly expressed in stamen, whereas HanMYOSIN 2.2, HanMYOSIN 12.1 and HanMYOSIN 17.1 showed higher expression in nectary. This study enhance our understanding the function of myosins in plant development, and forms the basis for future research about the comparative genomics of plant myosin in other crop plants.
Collapse
Affiliation(s)
- Hafiz Muhammad Ahmad
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan,Corresponding author.
| | - Hayat Ali Alafari
- Deparment of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Haripur 22620, Pakistan,Corresponding author.
| | - Dalal S. Alshaya
- Deparment of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sidra Toor
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Nouman Rasool
- Department of Plant Breeding and Genetics, University of Haripur, Haripur 22620, Pakistan
| | - Kotb A. Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455-11451, Riyadh 11451, Saudi Arabia,Department of Rice Biotechnology, RRTC, Institute of Field Crops, ARC, Sakha, 33177, Kafrelsheikh, Egypt
| | - Madiha Zaynab
- College of Life Science & Oceanography, Shenzhen University, China
| | - Saira Azmat
- Agriculture Extension and Adaptive Research, Agriculture Department, Government of Punjab, Pakistan
| | - Asmaa M. Abushady
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt,Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt
| | - Yinglong Chen
- School of Earth and Environment and UWA Institute of Agriculture, University of Western Australia, Australia
| |
Collapse
|
2
|
Pathak RK, Singh DB, Singh R. Introduction to basics of bioinformatics. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
3
|
Allaby RG, Woodwark M. Phylogenomic Analysis Reveals Extensive Phylogenetic Mosaicism in the Human GPCR Superfamily. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A novel high throughput phylogenomic analysis (HTP) was applied to the rhodopsin G-protein coupled receptor (GPCR) family. Instances of phylogenetic mosaicism between receptors were found to be frequent, often as instances of correlated mosaicism and repeated mosaicism. A null data set was constructed with the same phylogenetic topology as the rhodopsin GPCRs. Comparison of the two data sets revealed that mosaicism was found in GPCRs in a higher frequency than would be expected by homoplasy or the effects of topology alone. Various evolutionary models of differential conservation, recombination and homoplasy are explored which could result in the patterns observed in this analysis. We find that the results are most consistent with frequent recombination events. A complex evolutionary history is illustrated in which it is likely frequent recombination has endowed GPCRs with new functions. The pattern of mosaicism is shown to be informative for functional prediction for orphan receptors. HTP analysis is complementary to conventional phylogenomic analyses revealing mosaicism that would not otherwise have been detectable through conventional phylogenetics.
Collapse
Affiliation(s)
- Robin G. Allaby
- Warwick HRI, University of Warwick, Wellesbourne, CV35 9EF, UK
| | - Mathew Woodwark
- Cambridge Antibody Technology Ltd., Milstein Building, Granta Park, Cambridge CB1 6GH, UK
| |
Collapse
|
4
|
Pasha SN, Meenakshi I, Sowdhamini R. Revisiting Myosin Families Through Large-scale Sequence Searches Leads to the Discovery of New Myosins. Evol Bioinform Online 2016; 12:201-11. [PMID: 27597808 PMCID: PMC5006635 DOI: 10.4137/ebo.s39880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/19/2016] [Accepted: 06/24/2016] [Indexed: 11/26/2022] Open
Abstract
Myosins are actin-based motor proteins involved in many cellular movements. It is interesting to study the evolutionary patterns and the functional attributes of various types of myosins. Computational search algorithms were performed to identify putative myosin members by phylogenetic analysis, sequence motifs, and coexisting domains. This study is aimed at understanding the distribution and the likely biological functions of myosins encoded in various taxa and available eukaryotic genomes. We report here a phylogenetic analysis of around 4,064 myosin motor domains, built entirely from complete or near-complete myosin repertoires incorporating many unclassified, uncharacterized sequences and new myosin classes, with emphasis on myosins from Fungi, Haptophyta, and other Stramenopiles, Alveolates, and Rhizaria (SAR). The identification of large classes of myosins in Oomycetes, Cellular slime molds, Choanoflagellates, Pelagophytes, Eustigmatophyceae, Fonticula, Eucoccidiorida, and Apicomplexans with novel myosin motif variants that are conserved and thus presumably functional extends our knowledge of this important family of motor proteins. This work provides insights into the distribution and probable function of myosins including newly identified myosin classes.
Collapse
Affiliation(s)
- Shaik Naseer Pasha
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK campus, Bangalore, India
- Manipal University, Madhav Nagar, Manipal, Karnataka
| | - Iyer Meenakshi
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK campus, Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK campus, Bangalore, India
| |
Collapse
|
5
|
Identification of a new class of adenosine deaminase from Helicobacter pylori with homologs among diverse taxa. J Bacteriol 2013; 195:4154-60. [PMID: 23852874 DOI: 10.1128/jb.00587-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Early studies of Helicobacter pylori's nutritional requirements alluded to a complete purine salvage network in this organism. Recently, this hypothesis was confirmed in two strains of H. pylori, whose purine requirements were satisfied by any single purine base or nucleoside. Most of the purine conversion enzymes in H. pylori have been studied using mutant analysis; however, the gene encoding adenosine deaminase (ADD) in H. pylori remained unidentified. Through stepwise protein purification followed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF), we discovered that H. pylori ADD is encoded by hp0267, an apparently essential gene. Hp0267 shares no sequence homology with previously characterized ADDs, yet both are members of the amidohydrolase superfamily. Hp0267 is grouped within cog0402, while other ADDs studied to date are found in cog1816. The hp0267 locus was previously misannotated as encoding a chlorohydrolase. Using purified recombinant Hp0267, we determined the enzyme's pH optimum, temperature optimum, substrate specificity, and estimated kinetic constants. In contrast to other known ADDs, Hp0267 contains Fe(II) as the relevant metal ligand. Furthermore, Hp0267 exhibits very low deaminase activity on 2'-deoxyadenosine, a substrate that is readily hydrolyzed by cog1816 ADDs. Our preliminary comparative genomic analysis suggests that Hp0267 represents a second enzyme class of adenosine deaminase whose phyletic distribution among prokaryotes is broad.
Collapse
|
7
|
Moore JD, Allaby RG. TreeMos: a high-throughput phylogenomic approach to find and visualize phylogenetic mosaicism. Bioinformatics 2008; 24:717-8. [PMID: 18204056 DOI: 10.1093/bioinformatics/btn027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SUMMARY TreeMos is a novel high-throughput graphical analysis application that allows the user to search for phylogenetic mosaicism among one or more DNA or protein sequence multiple alignments and additional unaligned sequences. TreeMos uses a sliding window and local alignment algorithm to identify the nearest neighbour of each sequence segment, and visualizes instances of sequence segments whose nearest neighbour is anomalous to that identified using the global alignment. Data sets can include whole genome sequences allowing phylogenomic analyses in which mosaicism may be attributed to recombination between any two points in the genome. TreeMos can be run from the command line, or within a web browser allowing the relationships between taxa to be explored by drill-through. AVAILABILITY http://www2.warwick.ac.uk/fac/sci/whri/research/archaeobotany.
Collapse
Affiliation(s)
- J D Moore
- Warwick HRI, University of Warwick, Warwick, CV35 9EF, UK.
| | | |
Collapse
|
8
|
Allaby RG, Woodwark M. Phylogenomic analysis reveals extensive phylogenetic mosaicism in the human GPCR superfamily. Evol Bioinform Online 2007; 3:357-70. [PMID: 19468313 PMCID: PMC2684142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
A novel high throughput phylogenomic analysis (HTP) was applied to the rhodopsin G-protein coupled receptor (GPCR) family. Instances of phylogenetic mosaicism between receptors were found to be frequent, often as instances of correlated mosaicism and repeated mosaicism. A null data set was constructed with the same phylogenetic topology as the rhodopsin GPCRs. Comparison of the two data sets revealed that mosaicism was found in GPCRs in a higher frequency than would be expected by homoplasy or the effects of topology alone. Various evolutionary models of differential conservation, recombination and homoplasy are explored which could result in the patterns observed in this analysis. We find that the results are most consistent with frequent recombination events. A complex evolutionary history is illustrated in which it is likely frequent recombination has endowed GPCRs with new functions. The pattern of mosaicism is shown to be informative for functional prediction for orphan receptors. HTP analysis is complementary to conventional phylogenomic analyses revealing mosaicism that would not otherwise have been detectable through conventional phylogenetics.
Collapse
Affiliation(s)
- Robin G. Allaby
- Warwick HRI, University of Warwick, Wellesbourne, CV35 9EF, UK,Correspondence: Robin G. Allaby, Fax: +44 (0) 2476574500;
| | - Mathew Woodwark
- Cambridge Antibody Technology Ltd., Milstein Building, Granta Park, Cambridge CB1 6GH, UK
| |
Collapse
|