1
|
Mołoń M, Małek G, Bzducha-Wróbel A, Kula-Maximenko M, Mołoń A, Galiniak S, Skrzypiec K, Zebrowski J. Disturbances in cell wall biogenesis as a key factor in the replicative aging of budding yeast. Biogerontology 2025; 26:54. [PMID: 39907841 DOI: 10.1007/s10522-025-10196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Aging is a multifactorial process that significantly impairs organismal function. Yeast is one of the model organisms used in aging research. Our understanding of the impact of the cell wall on aging remains elusive. Yeast cell wall is a complex and dynamic structure that plays a crucial role in the growth, survival, and aging of Saccharomyces cerevisiae. In this study, we demonstrated for the first time that the deletion of genes involved in cell wall biogenesis leads to significant impact on aging. In this study, we analysed five deletion mutants: crh2Δ, cwp1Δ, flo11Δ, gas1Δ and hsp12Δ. We showed a correlation between Raman spectroscopy signatures assigned to proteins, nucleic acids and RNA and replicative aging. Using Raman spectroscopy, we also revealed that a lack GAS1 gene results in significant changes in the biochemical composition of the cells that may increase sensitivity to environmental stressors. Our data unequivocally indicate that employing yeast as a model in aging research is appropriate, as long as the factors under analysis are not implicated in cell wall biogenesis.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Faculty of Biology and Nature Protection, Rzeszów University, 35-601, Rzeszów, Poland.
| | - Gabriela Małek
- Faculty of Biology and Nature Protection, Rzeszów University, 35-601, Rzeszów, Poland
| | - Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Ul. Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Krakow, Poland
| | - Agnieszka Mołoń
- Faculty of Medical Sciences, Rzeszów University, 35-959, Rzeszów, Poland
| | - Sabina Galiniak
- Faculty of Medical Sciences, Rzeszów University, 35-959, Rzeszów, Poland
| | - Krzysztof Skrzypiec
- Analytical Laboratory, Faculty of Chemistry, Maria Curie-Skłodowska University, M.C. Skłodowska Square 5, 20-031, Lublin, Poland
| | - Jacek Zebrowski
- Faculty of Biology and Nature Protection, Rzeszów University, 35-601, Rzeszów, Poland
| |
Collapse
|
2
|
Chan A, Hays M, Sherlock G. The Viral K1 Killer Yeast System: Toxicity, Immunity, and Resistance. Yeast 2025. [PMID: 39853823 DOI: 10.1002/yea.3987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Killer yeasts, such as the K1 killer strain of S. Cerevisiae, express a secreted anti-competitive toxin whose production and propagation require the presence of two vertically-transmitted dsRNA viruses. In sensitive cells lacking killer virus infection, toxin binding to the cell wall results in ion pore formation, disruption of osmotic homeostasis, and cell death. However, the exact mechanism(s) of K1 toxin killing activity, how killer yeasts are immune to their own toxin, and which factors could influence adaptation and resistance to K1 toxin within formerly sensitive populations are still unknown. Here, we describe the state of knowledge about K1 killer toxin, including current models of toxin processing and killing activity, and a summary of known modifiers of K1 toxin immunity and resistance. In addition, we discuss two key signaling pathways, HOG (high osmolarity glycerol) and CWI (cell wall integrity), whose involvement in an adaptive response to K1 killer toxin in sensitive cells has been previously documented but requires further study. As both host-virus and sensitive-killer competition have been documented in killer systems like K1, further characterization of K1 killer yeasts may provide a useful model system for study of both intracellular genetic conflict and counter-adaptation between competing sensitive and killer populations.
Collapse
Affiliation(s)
- Angelina Chan
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Michelle Hays
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Sornlek W, Suwanakitti N, Sonthirod C, Tangphatsornruang S, Ingsriswang S, Runguphan W, Eurwilaichtr L, Tanapongpipat S, Champreda V, Roongsawang N, Schaap PJ, Martins Dos Santos VAP. Identification of genes associated with the high-temperature fermentation trait in the Saccharomyces cerevisiae natural isolate BCC39850. Arch Microbiol 2024; 206:391. [PMID: 39230763 DOI: 10.1007/s00203-024-04117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
The fermentative model yeast Saccharomyces cerevisiae has been extensively used to study the genetic basis of stress response and homeostasis. In this study, we performed quantitative trait loci (QTL) analysis of the high-temperature fermentation trait of the progeny from the mating of the S. cerevisiae natural isolate BCC39850 (haploid#17) and the laboratory strain CEN.PK2-1C. A single QTL on chromosome X was identified, encompassing six candidate genes (GEA1, PTK2, NTA1, NPA3, IRT1, and IML1). The functions of these candidates were tested by reverse genetic experiments. Deletion mutants of PTK2, NTA1, and IML1 showed growth defects at 42 °C. The PTK2 knock-out mutant also showed significantly reduced ethanol production and plasma membrane H+ ATPase activity and increased sensitivity to acetic acid, ethanol, amphotericin B (AMB), and β-1,3-glucanase treatment. The CRISPR-Cas9 system was used to construct knock-in mutants by replacement of PTK2, NTA1, IML1, and NPA3 genes with BCC39850 alleles. The PTK2 and NTA1 knock-in mutants showed increased growth and ethanol production titers at 42 °C. These findings suggest an important role for the PTK2 serine/threonine protein kinase in regulating plasma membrane H+ ATPase activity and the NTA1 N-terminal amidase in protein degradation via the ubiquitin-proteasome system machinery, which affects tolerance to heat stress in S. cerevisiae.
Collapse
Affiliation(s)
- Warasirin Sornlek
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
- The Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Nattida Suwanakitti
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Supawadee Ingsriswang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Lily Eurwilaichtr
- National Energy Technology Center, 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sutipa Tanapongpipat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Niran Roongsawang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Peter J Schaap
- The Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Vitor A P Martins Dos Santos
- The Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, the Netherlands.
- Bioprocess Engineering Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163, Berlin, Germany.
| |
Collapse
|
4
|
Brettrager EJ, Frederick AJ, van Waardenburg RC. Zymolyase Treatment of Saccharomyces cerevisiae Affects Cellular Proteins and Degrades Tyrosyl-DNA Phosphodiesterase I. DNA Cell Biol 2024; 43:353-361. [PMID: 38682313 PMCID: PMC11322624 DOI: 10.1089/dna.2024.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Saccharomyces cerevisiae is a genetically tractable, affordable, and extensively documented eukaryotic single-cell model organism. This budding yeast is amenable for the development of genetic and biochemical experiments and is frequently used to investigate the function, activity, and mechanism of mammalian proteins. However, yeast contains a cell wall that hinders select assays including organelle isolation. Lytic enzymes, with Zymolyase as the most effective and frequently used tool, are utilized to weaken the yeast cell wall resulting in yeast spheroplasts. Spheroplasts are easily lysed by, for example, osmotic-shock conditions to isolate yeast nuclei or mitochondria. However, during our studies of the DNA repair enzyme tyrosyl-DNA phosphodiesterase I (Tdp1), we encountered a negative effect of Zymolyase. We observed that Zymolyase treatment affected the steady-state protein levels of Tdp1. This was revealed by inconsistencies in technical and biological replicate lysates of plasmid-born galactose-induced expression of Tdp1. This off-target effect of Zymolyase is rarely discussed in articles and affects a select number of intracellular proteins, including transcription factors and assays such as chromatin immunoprecipitations. Following extensive troubleshooting, we concluded that the culprit is the Ser-protease, Zymolyase B, component of the Zymolyase enzyme mixture that causes the degradation of Tdp1. In this study, we report the protocols we have used, and our final protocol with an easy, affordable adaptation to any assay/protocol involving Zymolyase.
Collapse
Affiliation(s)
- Evan J. Brettrager
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aaron J. Frederick
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
5
|
Perpetuini G, Rossetti AP, Rapagnetta A, Arfelli G, Prete R, Tofalo R. Wine Barrel Biofilm as a Source of Yeasts with Non-Conventional Properties. Microorganisms 2024; 12:880. [PMID: 38792710 PMCID: PMC11123285 DOI: 10.3390/microorganisms12050880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the main microbial groups characterizing the interior surface of oak barrels from different years (1890, 1895, 1920, 1975, 2008) used in the production of vino cotto. The yeasts were characterized for the following properties: γ-aminobutyric acid (GABA) production, antioxidant activity, air-liquid interfacial biofilm formation, and anthocyanin adsorption capacity. Community-level physiological profile analysis revealed that the microbial communities inside the barrels used the tested carbon sources in different manners. The following yeast species were identified: Millerozyma farinosa, Zygosaccharomyces bisporus, Wickerhamiella versatilis, Zygosaccharomyces bailii, Starmerella lactis-condensi, and Zygosaccharomyces rouxii. All the strains were able to produce GABA, and S. lactis-condensi, Z. bisporus and Z. rouxii were the highest producers (more than 600 mg/L). The Z. rouxii and Z. bailii strains showed the highest antioxidant activity. Only seven strains out of ten M. farinosa formed air-liquid interfacial biofilm. None of the M. farinosa strains adsorbed anthocyanins on their cell wall. The other strains adsorbed anthocyanins in a strain-dependent way, and the highest adsorption was observed for the W. versatilis strains. The yeasts isolated in this study could be used to increase the functional properties and the quality of fermented foods and beverages.
Collapse
Affiliation(s)
- Giorgia Perpetuini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (A.P.R.); (A.R.); (G.A.); (R.P.)
| | | | | | | | | | - Rosanna Tofalo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (A.P.R.); (A.R.); (G.A.); (R.P.)
| |
Collapse
|
6
|
Ohya Y, Ghanegolmohammadi F, Itto-Nakama K. Application of unimodal probability distribution models for morphological phenotyping of budding yeast. FEMS Yeast Res 2024; 24:foad056. [PMID: 38169030 PMCID: PMC10804223 DOI: 10.1093/femsyr/foad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/28/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024] Open
Abstract
Morphological phenotyping of the budding yeast Saccharomyces cerevisiae has helped to greatly clarify the functions of genes and increase our understanding of cellular functional networks. It is necessary to understand cell morphology and perform quantitative morphological analysis (QMA) but assigning precise values to morphological phenotypes has been challenging. We recently developed the Unimodal Morphological Data image analysis pipeline for this purpose. All true values can be estimated theoretically by applying an appropriate probability distribution if the distribution of experimental values follows a unimodal pattern. This reliable pipeline allows several downstream analyses, including detection of subtle morphological differences, selection of mutant strains with similar morphology, clustering based on morphology, and study of morphological diversity. In addition to basic research, morphological analyses of yeast cells can also be used in applied research to monitor breeding and fermentation processes and control the fermentation activity of yeast cells.
Collapse
Affiliation(s)
- Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Farzan Ghanegolmohammadi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Kaori Itto-Nakama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
7
|
Chuene LT, Ndlovu T, Rossouw D, Naidoo-Blassoples RK, Bauer FF. Isolation and characterization of Saccharomyces cerevisiae mutants with increased cell wall chitin using fluorescence-activated cell sorting. FEMS Yeast Res 2024; 24:foae028. [PMID: 39270658 PMCID: PMC11421375 DOI: 10.1093/femsyr/foae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
Yeast cell wall chitin has been shown to bind grape pathogenesis-related chitinases that are the primary cause of protein haze in wines, suggesting that yeast cell walls may be applied for haze protection. Here, we present a high-throughput screen to identify yeast strains with high cell wall chitin using a reiterative enrichment strategy and fluorescence-activated cell sorting of cells labelled with either GFP-tagged chitinase or Calcofluor white. To assess the validity of the strategy, we first used a pooled deletion strain library of Saccharomyces cerevisiae. The strategy enriched for deletion mutants with genes that had previously been described as having an impact on chitin levels. Genes that had not previously been linked to chitin biosynthesis or deposition were also identified. These genes are involved in cell wall maintenance and/or membrane trafficking functions. The strategy was then applied to a mutagenized population of a commercial wine yeast strain, S. cerevisiae EC1118. Enriched mutant strains showed significantly higher cell wall chitin than the wild type and significantly reduced the activity of chitinases in synthetic model wine, suggesting that these strains may be able to reduce haze formation in wine.
Collapse
Affiliation(s)
- Lesiba Tyrone Chuene
- South African Grape and Wine Research Institute, University of Stellenbosch, Matieland, Postcode 7600, South Africa
| | - Thulile Ndlovu
- South African Grape and Wine Research Institute, University of Stellenbosch, Matieland, Postcode 7600, South Africa
| | - Debra Rossouw
- South African Grape and Wine Research Institute, University of Stellenbosch, Matieland, Postcode 7600, South Africa
| | | | - Florian Franz Bauer
- South African Grape and Wine Research Institute, University of Stellenbosch, Matieland, Postcode 7600, South Africa
| |
Collapse
|
8
|
Li M, Chu Y, Dong X, Ji H. General mechanisms of weak acid-tolerance and current strategies for the development of tolerant yeasts. World J Microbiol Biotechnol 2023; 40:49. [PMID: 38133718 DOI: 10.1007/s11274-023-03875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Yeast cells are often subjected to various types of weak acid stress in the process of industrial production, food processing, and preservation, resulting in growth inhibition and reduced fermentation performance. Under acidic conditions, weak acids enter the near-neutral yeast cytoplasm and dissociate into protons and anions, leading to cytoplasmic acidification and cell damage. Although some yeast strains have developed the ability to survive weak acids, the complexity and diversity of stresses during industrial production still require the application of appropriate strategies for phenotypes improvement. In this review, we summarized current knowledge concerning weak acid stress response and resistance, which may suggest important targets for further construction of more robust strains. We also highlight current feasible strategies for improving the weak acid resistance of yeasts, such as adaptive laboratory evolution, transcription factors engineering, and cell membrane/wall engineering. Moreover, the challenges and perspectives associated with improving the competitiveness of industrial strains are also discussed. This review provides effective strategies for improving the industrial phenotypes of yeast from multiple dimensions in future studies.
Collapse
Affiliation(s)
- Mengmeng Li
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
| | - Yunfei Chu
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
| | - Xiameng Dong
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, PR China.
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China.
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|
9
|
Utama GL, Oktaviani L, Balia RL, Rialita T. Potential Application of Yeast Cell Wall Biopolymers as Probiotic Encapsulants. Polymers (Basel) 2023; 15:3481. [PMID: 37631538 PMCID: PMC10459707 DOI: 10.3390/polym15163481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Biopolymers of yeast cell walls, such as β-glucan, mannoprotein, and chitin, may serve as viable encapsulants for probiotics. Due to its thermal stability, β-glucan is a suitable cryoprotectant for probiotic microorganisms during freeze-drying. Mannoprotein has been shown to increase the adhesion of probiotic microorganisms to intestinal epithelial cells. Typically, chitin is utilized in the form of its derivatives, particularly chitosan, which is derived via deacetylation. Brewery waste has shown potential as a source of β-glucan that can be optimally extracted through thermolysis and sonication to yield up to 14% β-glucan, which can then be processed with protease and spray drying to achieve utmost purity. While laminarinase and sodium deodecyle sulfate were used to isolate and extract mannoproteins and glucanase was used to purify them, hexadecyltrimethylammonium bromide precipitation was used to improve the amount of purified mannoproteins to 7.25 percent. The maximum chitin yield of 2.4% was attained by continuing the acid-alkali reaction procedure, which was then followed by dialysis and lyophilization. Separation and purification of yeast cell wall biopolymers via diethylaminoethyl (DEAE) anion exchange chromatography can be used to increase the purity of β-glucan, whose purity in turn can also be increased using concanavalin-A chromatography based on the glucan/mannan ratio. In the meantime, mannoproteins can be purified via affinity chromatography that can be combined with zymolase treatment. Then, dialysis can be continued to obtain chitin with high purity. β-glucans, mannoproteins, and chitosan-derived yeast cell walls have been shown to promote the survival of probiotic microorganisms in the digestive tract. In addition, the prebiotic activity of β-glucans and mannoproteins can combine with microorganisms to form synbiotics.
Collapse
Affiliation(s)
- Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; (L.O.); (T.R.)
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Jalan Sekeloa Selatan 1 No 1, Bandung 40134, Indonesia
| | - Lidya Oktaviani
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; (L.O.); (T.R.)
| | - Roostita Lobo Balia
- Veterinary Study Program, Faculty of Medicine, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia;
| | - Tita Rialita
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; (L.O.); (T.R.)
| |
Collapse
|
10
|
Abstract
The fungal cell wall is essential for growth and survival, and is a key target for antifungal drugs and the immune system. The cell wall must be robust but flexible, protective and shielding yet porous to nutrients and membrane vesicles and receptive to exogenous signals. Most fungi have a common inner wall skeleton of chitin and β-glucans that functions as a flexible viscoelastic frame to which a more diverse set of outer cell wall polymers and glycosylated proteins are attached. Whereas the inner wall largely determines shape and strength, the outer wall confers properties of hydrophobicity, adhesiveness, and chemical and immunological heterogeneity. The spatial organization and dynamic regulation of the wall in response to prevailing growth conditions enable fungi to thrive within changing, diverse and often hostile environments. Understanding this architecture provides opportunities to develop diagnostics and drugs to combat life-threatening fungal infections.
Collapse
Affiliation(s)
- Neil A R Gow
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, UK.
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
11
|
Jo C, Zhang J, Tam JM, Church GM, Khalil AS, Segrè D, Tang TC. Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Mater Today Bio 2023; 19:100560. [PMID: 36756210 PMCID: PMC9900623 DOI: 10.1016/j.mtbio.2023.100560] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Filamentous fungi drive carbon and nutrient cycling across our global ecosystems, through its interactions with growing and decaying flora and their constituent microbiomes. The remarkable metabolic diversity, secretion ability, and fiber-like mycelial structure that have evolved in filamentous fungi have been increasingly exploited in commercial operations. The industrial potential of mycelial fermentation ranges from the discovery and bioproduction of enzymes and bioactive compounds, the decarbonization of food and material production, to environmental remediation and enhanced agricultural production. Despite its fundamental impact in ecology and biotechnology, molds and mushrooms have not, to-date, significantly intersected with synthetic biology in ways comparable to other industrial cell factories (e.g. Escherichia coli,Saccharomyces cerevisiae, and Komagataella phaffii). In this review, we summarize a suite of synthetic biology and computational tools for the mining, engineering and optimization of filamentous fungi as a bioproduction chassis. A combination of methods across genetic engineering, mutagenesis, experimental evolution, and computational modeling can be used to address strain development bottlenecks in established and emerging industries. These include slow mycelium growth rate, low production yields, non-optimal growth in alternative feedstocks, and difficulties in downstream purification. In the scope of biomanufacturing, we then detail previous efforts in improving key bottlenecks by targeting protein processing and secretion pathways, hyphae morphogenesis, and transcriptional control. Bringing synthetic biology practices into the hidden world of molds and mushrooms will serve to expand the limited panel of host organisms that allow for commercially-feasible and environmentally-sustainable bioproduction of enzymes, chemicals, therapeutics, foods, and materials of the future.
Collapse
Affiliation(s)
- Charles Jo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jing Zhang
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
| | - Jenny M. Tam
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ahmad S. Khalil
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel Segrè
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Tzu-Chieh Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
12
|
The NPR/Hal family of protein kinases in yeasts: biological role, phylogeny and regulation under environmental challenges. Comput Struct Biotechnol J 2022; 20:5698-5712. [PMID: 36320937 PMCID: PMC9596735 DOI: 10.1016/j.csbj.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Protein phosphorylation is the most common and versatile post-translational modification occurring in eukaryotes. In yeast, protein phosphorylation is fundamental for maintaining cell growth and adapting to sudden changes in environmental conditions by regulating cellular processes and activating signal transduction pathways. Protein kinases catalyze the reversible addition of phosphate groups to target proteins, thereby regulating their activity. In Saccharomyces cerevisiae, kinases are classified into six major groups based on structural and functional similarities. The NPR/Hal family of kinases comprises nine fungal-specific kinases that, due to lack of similarity with the remaining kinases, were classified to the “Other” group. These kinases are primarily implicated in regulating fundamental cellular processes such as maintaining ion homeostasis and controlling nutrient transporters’ concentration at the plasma membrane. Despite their biological relevance, these kinases remain poorly characterized and explored. This review provides an overview of the information available regarding each of the kinases from the NPR/Hal family, including their known biological functions, mechanisms of regulation, and integration in signaling pathways in S. cerevisiae. Information gathered for non-Saccharomyces species of biotechnological or clinical relevance is also included.
Collapse
|
13
|
Yammine M, Bray F, Flament S, Picavet A, Lacroix JM, Poilpré E, Mouly I, Rolando C. Reliable Approach for Pure Yeast Cell Wall Protein Isolation from Saccharomyces cerevisiae Yeast Cells. ACS OMEGA 2022; 7:29702-29713. [PMID: 36061670 PMCID: PMC9435031 DOI: 10.1021/acsomega.2c02176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Saccharomyces cerevisiae yeast is a fungus presenting a peripheral organelle called the cell wall. The cell wall protects the yeast cell from stress and provides means for communication with the surrounding environment. It has a complex molecular structure, composed of an internal part of cross-linked polysaccharides and an external part of mannoproteins. These latter are very interesting owing to their functional properties, dependent on their molecular features with massive mannosylations. Therefore, the molecular characterization of mannoproteins is a must relying on the optimal isolation and preparation of the cell wall fraction. Multiple methods are well reported for yeast cell wall isolation. The most applied one consists of yeast cell lysis by mechanical disruption. However, applying this classical approach to S288C yeast cells showed considerable contamination with noncell wall proteins, mainly comprising mitochondrial proteins. Herein, we tried to further purify the yeast cell wall preparation by two means: ultracentrifugation and Triton X-100 addition. While the first strategy showed limited outcomes in mitochondrial protein removal, the second strategy showed optimal results when Triton X-100 was added at 5%, allowing the identification of more mannoproteins and significantly enriching their amounts. This promising method could be reliably implemented on the lab scale for identification of mannoproteins and molecular characterization and industrial processes for "pure" cell wall isolation.
Collapse
Affiliation(s)
- Marie Yammine
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Fabrice Bray
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
| | - Stéphanie Flament
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
| | - Antoine Picavet
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Jean-Marie Lacroix
- Univ.
Lille, CNRS, UMR 8765, UGSF, Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Emmanuel Poilpré
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Isabelle Mouly
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Christian Rolando
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
- Shrieking
sixties, 1-3 Allée
Lavoisier, F-59650 Villeneuve-d’Ascq, France
| |
Collapse
|
14
|
Ramos-Viana V, Møller-Hansen I, Kempen P, Borodina I. Modulation of the cell wall protein Ecm33p in yeast Saccharomyces cerevisiae improves the production of small metabolites. FEMS Yeast Res 2022; 22:6654878. [PMID: 35922083 PMCID: PMC9440718 DOI: 10.1093/femsyr/foac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
The cell wall is a dynamic organelle that determines the shape and provides the cell with mechanical strength. This study investigated whether modulation of cell wall composition can influence the production or secretion of small metabolites by yeast cell factories. We deleted and upregulated several cell wall-related genes KRE2, CWP1, CWP2, ECM33, PUN1, and LAS21 in yeast Saccharomyces cerevisiae engineered for p-coumaric acid or β-carotene production. Deletions of las21∆ and ecm33∆ impaired the yeast growth on medium with cell wall stressors, calcofluor white, and caffeine. Both overexpression and deletion of ECM33 significantly improved the specific yield of p-coumaric acid and β-carotene. We observed no change in secretion in any cell wall altered mutants, suggesting the cell wall is not a limiting factor for small molecule secretion at the current production levels. We evaluated the cell wall morphology of the ECM33 mutant strains using transmission electron microscopy. The ecm33∆ mutants had an increased chitin deposition and a less structured cell wall, while the opposite was observed in ECM33-overexpressing strains. Our results point at the cell wall-related gene ECM33 as a potential target for improving production in engineered yeast cell factories.
Collapse
Affiliation(s)
- Verónica Ramos-Viana
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Iben Møller-Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Paul Kempen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Lyngby, Denmark.,National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Ribeiro RA, Bourbon-Melo N, Sá-Correia I. The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 2022; 13:953479. [PMID: 35966694 PMCID: PMC9366716 DOI: 10.3389/fmicb.2022.953479] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
In industrial settings and processes, yeasts may face multiple adverse environmental conditions. These include exposure to non-optimal temperatures or pH, osmotic stress, and deleterious concentrations of diverse inhibitory compounds. These toxic chemicals may result from the desired accumulation of added-value bio-products, yeast metabolism, or be present or derive from the pre-treatment of feedstocks, as in lignocellulosic biomass hydrolysates. Adaptation and tolerance to industrially relevant stress factors involve highly complex and coordinated molecular mechanisms occurring in the yeast cell with repercussions on the performance and economy of bioprocesses, or on the microbiological stability and conservation of foods, beverages, and other goods. To sense, survive, and adapt to different stresses, yeasts rely on a network of signaling pathways to modulate the global transcriptional response and elicit coordinated changes in the cell. These pathways cooperate and tightly regulate the composition, organization and biophysical properties of the cell wall. The intricacy of the underlying regulatory networks reflects the major role of the cell wall as the first line of defense against a wide range of environmental stresses. However, the involvement of cell wall in the adaptation and tolerance of yeasts to multiple stresses of biotechnological relevance has not received the deserved attention. This article provides an overview of the molecular mechanisms involved in fine-tuning cell wall physicochemical properties during the stress response of Saccharomyces cerevisiae and their implication in stress tolerance. The available information for non-conventional yeast species is also included. These non-Saccharomyces species have recently been on the focus of very active research to better explore or control their biotechnological potential envisaging the transition to a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Ricardo A. Ribeiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Bourbon-Melo
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Li W, Li M, Li S, Zhang Y, Li X, Xu G, Yu L. Function of Rice High-Affinity Potassium Transporters in Pollen Development and Fertility. PLANT & CELL PHYSIOLOGY 2022; 63:967-980. [PMID: 35536598 DOI: 10.1093/pcp/pcac061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Plant High-affinity K+ transporters/K+ uptake permeases/K+ transporters (HAK/KUP/KT) transporters have been predicted as membrane H+-K+ symporters in facilitating K+ uptake and distribution, while their role in seed production remains to be elucidated. In this study, we report that OsHAK26 is preferentially expressed in anthers and seed husks and located in the Golgi apparatus. Knockout of either OsHAK26 or plasma membrane located H+-K+ symporter gene OsHAK1 or OsHAK5 in both Nipponbare and Dongjin cultivars caused distorted anthers, reduced number and germination rate of pollen grains. Seed-setting rate assay by reciprocal cross-pollination between the mutants of oshak26, oshak1, oshak5 and their wild types confirmed that each HAK transporter is foremost for pollen viability, seed-setting and grain yield. Intriguingly, the pollens of oshak26 showed much thinner wall and were more vulnerable to desiccation than those of oshak1 or oshak5. In vitro assay revealed that the pollen germination rate of oshak5 was dramatically affected by external K+ concentration. The results suggest that the role of OsHAK26 in maintaining pollen development and fertility may relate to its proper cargo sorting for construction of pollen walls, while the role of OsHAK1 and OsHAK5 in maintaining seed production likely relates to their transcellular K+ transport activity.
Collapse
Affiliation(s)
- Weihong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Academy of Agricultural Sciences, Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huaian, Jiangsu 223001, China
| | - Mengqi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Sanz AB, Díez-Muñiz S, Moya J, Petryk Y, Nombela C, Rodríguez-Peña JM, Arroyo J. Systematic Identification of Essential Genes Required for Yeast Cell Wall Integrity: Involvement of the RSC Remodelling Complex. J Fungi (Basel) 2022; 8:jof8070718. [PMID: 35887473 PMCID: PMC9323250 DOI: 10.3390/jof8070718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Conditions altering the yeast cell wall lead to the activation of an adaptive transcriptional response mainly governed by the cell wall integrity (CWI) mitogen-activated protein kinase (MAPK) pathway. Two high-throughput screenings were developed using the yTHC collection of yeast conditional mutant strains to systematically identify essential genes related to cell wall integrity, and those required for the transcriptional program elicited by cell wall stress. Depleted expression of 52 essential genes resulted in hypersensitivity to the dye Calcofluor white, with chromatin organization, Golgi vesicle transport, rRNA processing, and protein glycosylation processes, as the most highly representative functional groups. Via a flow cytometry-based quantitative assay using a CWI reporter plasmid, 97 strains exhibiting reduced gene-reporter expression levels upon stress were uncovered, highlighting genes associated with RNA metabolism, transcription/translation, protein degradation, and chromatin organization. This screening also led to the discovery of 41 strains displaying a basal increase in CWI-associated gene expression, including mainly putative cell wall-related genes. Interestingly, several members of the RSC chromatin remodelling complex were uncovered in both screenings. Notably, Rsc9 was necessary to regulate the gene expression of CWI-related genes both under stress and non-stress conditions, suggesting distinct requirements of the RSC complex for remodelling particular genes.
Collapse
|
18
|
Zhang J, Xiao K, Li M, Hu H, Zhang X, Liu J, Pan H, Zhang Y. SsAGM1-Mediated Uridine Diphosphate-N-Acetylglucosamine Synthesis Is Essential for Development, Stress Response, and Pathogenicity of Sclerotinia sclerotiorum. Front Microbiol 2022; 13:938784. [PMID: 35814696 PMCID: PMC9260252 DOI: 10.3389/fmicb.2022.938784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen. S. sclerotiorum can cause Sclerotinia stem rot in more than 600 species of plants, which results in serious economic losses every year. Chitin is one of the most important polysaccharides in fungal cell walls. Chitin and β-Glucan form a scaffold that wraps around the cell and determines the vegetative growth and pathogenicity of pathogens. UDP-GlcNAc is a direct precursor of chitin synthesis. During the synthesis of UDP-GlcNAc, the conversion of GlcNAc-6P to GlcNAc-1P that is catalyzed by AGM1 (N-acetylglucosamine-phosphate mutase) is a key step. However, the significance and role of AGM1 in phytopathogenic fungus are unclear. We identified a cytoplasm-localized SsAGM1 in S. sclerotiorum, which is homologous to AGM1 of Saccharomyces cerevisiae. We utilized RNA interference (RNAi) and overexpression to characterize the function of SsAGM1 in S. sclerotiorum. After reducing the expression of SsAGM1, the contents of chitin and UDP-GlcNAc decreased significantly. Concomitantly, the gene-silenced transformants of SsAGM1 slowed vegetative growth and, importantly, lost the ability to produce sclerotia and infection cushion; it also lost virulence, even on wounded leaves. In addition, SsAGM1 was also involved in the response to osmotic stress and inhibitors of cell wall synthesis. Our results revealed the function of SsAGM1 in the growth, development, stress response, and pathogenicity in S. sclerotiorum.
Collapse
|
19
|
Shahi G, Kumar M, Khandelwal NK, Banerjee A, Sarkar P, Kumari S, Esquivel BD, Chauhan N, Chattopadhyay A, White TC, Gaur NA, Singh A, Prasad R. Inositol Phosphoryl Transferase, Ipt1, Is a Critical Determinant of Azole Resistance and Virulence Phenotypes in Candida glabrata. J Fungi (Basel) 2022; 8:jof8070651. [PMID: 35887407 PMCID: PMC9322651 DOI: 10.3390/jof8070651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, we have specifically blocked a key step of sphingolipid (SL) biosynthesis in Candida glabrata by disruption of the orthologs of ScIpt1 and ScSkn1. Based on their close homology with S. cerevisiae counterparts, the proteins are predicted to catalyze the addition of a phosphorylinositol group onto mannosyl inositolphosphoryl ceramide (MIPC) to form mannosyl diinositolphosphoryl ceramide (M(IP)2C), which accounts for the majority of complex SL structures in S. cerevisiae membranes. High throughput lipidome analysis confirmed the accumulation of MIPC structures in ΔCgipt1 and ΔCgskn1 cells, albeit to lesser extent in the latter. Noticeably, ΔCgipt1 cells showed an increased susceptibility to azoles; however, ΔCgskn1 cells showed no significant changes in the drug susceptibility profiles. Interestingly, the azole susceptible phenotype of ΔCgipt1 cells seems to be independent of the ergosterol content. ΔCgipt1 cells displayed altered lipid homeostasis, increased membrane fluidity as well as high diffusion of radiolabeled fluconazole (3H-FLC), which could together influence the azole susceptibility of C. glabrata. Furthermore, in vivo experiments also confirmed compromised virulence of the ΔCgipt1 strain. Contrarily, specific functions of CgSkn1 remain unclear.
Collapse
Affiliation(s)
- Garima Shahi
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
| | - Mohit Kumar
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (N.A.G.)
| | | | - Atanu Banerjee
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India; (P.S.); (A.C.)
| | - Sonam Kumari
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (N.A.G.)
| | - Brooke D. Esquivel
- School of Biological and Chemical Sciences, University of Missouri at Kansas City, Kansas City, MO 64110, USA; (B.D.E.); (T.C.W.)
| | - Neeraj Chauhan
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA;
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India; (P.S.); (A.C.)
| | - Theodore C. White
- School of Biological and Chemical Sciences, University of Missouri at Kansas City, Kansas City, MO 64110, USA; (B.D.E.); (T.C.W.)
| | - Naseem A. Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (N.A.G.)
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
- Correspondence: (A.S.); (R.P.)
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
- Correspondence: (A.S.); (R.P.)
| |
Collapse
|
20
|
Dissection and enhancement of prebiotic properties of yeast cell wall oligosaccharides through metabolic engineering. Biomaterials 2022; 282:121379. [DOI: 10.1016/j.biomaterials.2022.121379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/09/2021] [Accepted: 01/16/2022] [Indexed: 02/06/2023]
|
21
|
Ghanegolmohammadi F, Okada H, Liu Y, Itto-Nakama K, Ohnuki S, Savchenko A, Bi E, Yoshida S, Ohya Y. Defining Functions of Mannoproteins in Saccharomyces cerevisiae by High-Dimensional Morphological Phenotyping. J Fungi (Basel) 2021; 7:jof7090769. [PMID: 34575807 PMCID: PMC8466635 DOI: 10.3390/jof7090769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Mannoproteins are non-filamentous glycoproteins localized to the outermost layer of the yeast cell wall. The physiological roles of these structural components have not been completely elucidated due to the limited availability of appropriate tools. As the perturbation of mannoproteins may affect cell morphology, we investigated mannoprotein mutants in Saccharomyces cerevisiae via high-dimensional morphological phenotyping. The mannoprotein mutants were morphologically classified into seven groups using clustering analysis with Gaussian mixture modeling. The pleiotropic phenotypes of cluster I mutant cells (ccw12Δ) indicated that CCW12 plays major roles in cell wall organization. Cluster II (ccw14Δ, flo11Δ, srl1Δ, and tir3Δ) mutants exhibited altered mother cell size and shape. Mutants of cluster III and IV exhibited no or very small morphological defects. Cluster V (dse2Δ, egt2Δ, and sun4Δ) consisted of endoglucanase mutants with cell separation defects due to incomplete septum digestion. The cluster VI mutant cells (ecm33Δ) exhibited perturbation of apical bud growth. Cluster VII mutant cells (sag1Δ) exhibited differences in cell size and actin organization. Biochemical assays further confirmed the observed morphological defects. Further investigations based on various omics data indicated that morphological phenotyping is a complementary tool that can help with gaining a deeper understanding of the functions of mannoproteins.
Collapse
Affiliation(s)
- Farzan Ghanegolmohammadi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.O.); (E.B.)
| | - Yaxuan Liu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
| | - Kaori Itto-Nakama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
| | - Anna Savchenko
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, ER 6229 Maastricht, The Netherlands
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.O.); (E.B.)
| | - Satoshi Yoshida
- School of International Liberal Studies, Nishi-Waseda Campus, Waseda University, Tokyo 169-8050, Japan;
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
- Correspondence:
| |
Collapse
|
22
|
van Leeuwe TM, Arentshorst M, Punt PJ, Ram AF. Interrogation of the cell wall integrity pathway in Aspergillus niger identifies a putative negative regulator of transcription involved in chitin deposition. Gene 2021; 763S:100028. [PMID: 32550555 PMCID: PMC7285910 DOI: 10.1016/j.gene.2020.100028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/18/2019] [Accepted: 01/23/2020] [Indexed: 01/26/2023]
Abstract
Post-fermentation fungal biomass waste provides a viable source for chitin. Cell wall chitin of filamentous fungi, and in particular its de-N-acetylated derivative chitosan, has a wide range of commercial applications. Although the cell wall of filamentous fungi comprises 10–30% chitin, these yields are too low for cost-effective production. Therefore, we aimed to identify the genes involved in increased chitin deposition by screening a collection of UV-derived cell wall mutants in Aspergillus niger. This screen revealed a mutant strain (RD15.4#55) that showed a 30–40% increase in cell wall chitin compared to the wild type. In addition to the cell wall chitin phenotype, this strain also exhibited sensitivity to SDS and produces an unknown yellow pigment. Genome sequencing combined with classical genetic linkage analysis identified two mutated genes on chromosome VII that were linked with the mutant phenotype. Single gene knockouts and subsequent complementation analysis revealed that an 8 bp deletion in NRRL3_09595 is solely responsible for the associated phenotypes of RD15.4#55. The mutated gene, which was named cwcA (cell wall chitin A), encodes an orthologue of Saccharomyces cerevisiae Bypass of ESS1 (BYE1), a negative regulator of transcription elongation. We propose that this conserved fungal protein is involved in preventing cell wall integrity signaling under non-inducing conditions, where loss of function results in constitutive activation of the cell wall stress response pathway, and consequently leads to increased chitin content in the mutant cell wall. An Aspergillus niger UV-mutant with increased cell wall chitin was characterized. Causative mutation was identified in a single gene, named cell wall chitin A (cwcA). CwcA is orthologous to yeast Bye1p and exists as a single copy gene. Three relevant domains are found in both CwcA and Bye1p: PHD, TFIIS and SPOC. CwcA acts as negative regulator of CWI signaling.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Peter J. Punt
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Arthur F.J. Ram
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
- Corresponding author at: Leiden University, Institute of Biology, Department Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
23
|
Shoket H, Pandita M, Sharma M, Kumar R, Rakwal A, Wazir S, Verma V, Salunke DB, Bairwa NK. Genetic interaction between F-box motif encoding YDR131C and retrograde signaling-related RTG1 regulates the stress response and apoptosis in Saccharomyces cerevisiae. J Biochem Mol Toxicol 2021; 35:e22864. [PMID: 34309121 DOI: 10.1002/jbt.22864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
The retrograde signaling pathway is well conserved from yeast to humans, which regulates cell adaptation during stress conditions and prevents cell death. One of its components, RTG1 encoded Rtg1p in association with Rtg3p communicates between mitochondria, nucleus, and peroxisome during stress for adaptation, by regulation of transcription. The F-box motif protein encoded by YDR131C constitutes a part of SCF Ydr131c -E3 ligase complex, with unknown function; however, it is known that retrograde signaling is modulated by the E3 ligase complex. This study reports epistasis interaction between YDR131C and RTG1, which regulates cell growth, response to genotoxic stress, decreased apoptosis, resistance to petite mutation, and cell wall integrity. The cells of ydr131cΔrtg1Δ genetic background exhibits growth rate improvement however, sensitivity to hydroxyurea, itraconazole antifungal agent and synthetic indoloquinazoline-based alkaloid (8-fluorotryptanthrin, RK64), which disrupts the cell wall integrity in Saccharomyces cerevisiae. The epistatic interaction between YDR131C and RTG1 indicates a link between protein degradation and retrograde signaling pathways.
Collapse
Affiliation(s)
- Heena Shoket
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Monika Pandita
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Meenu Sharma
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Ravinder Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Ayushi Rakwal
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Shreya Wazir
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Vijeshwar Verma
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India.,National Interdisciplinary Centre of Vaccine, Immunotherapeutic and Antimicrobials, Panjab University, Chandigarh, India
| | - Narendra K Bairwa
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| |
Collapse
|
24
|
Yeast Cells in Microencapsulation. General Features and Controlling Factors of the Encapsulation Process. Molecules 2021; 26:molecules26113123. [PMID: 34073703 PMCID: PMC8197184 DOI: 10.3390/molecules26113123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Besides their best-known uses in the food and fermentation industry, yeasts have also found application as microcapsules. In the encapsulation process, exogenous and most typically hydrophobic compounds diffuse and end up being passively entrapped in the cell body, and can be released upon application of appropriate stimuli. Yeast cells can be employed either living or dead, intact, permeabilized, or even emptied of all their original cytoplasmic contents. The main selling points of this set of encapsulation technologies, which to date has predominantly targeted food and-to a lesser extent-pharmaceutical applications, are the low cost, biodegradability and biocompatibility of the capsules, coupled to their sustainable origin (e.g., spent yeast from brewing). This review aims to provide a broad overview of the different kinds of yeast-based microcapsules and of the main physico-chemical characteristics that control the encapsulation process and its efficiency.
Collapse
|
25
|
Omura F, Takagi M, Kodama Y. Compromised chitin synthesis in lager yeast affects its Congo red resistance and release of mannoproteins from the cells. FEMS Microbiol Lett 2020; 367:5974272. [PMID: 33175116 DOI: 10.1093/femsle/fnaa181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/08/2020] [Indexed: 11/14/2022] Open
Abstract
A mutant lager strain resistant to the cell wall-perturbing agent Congo red (CR) was isolated and the genetic alterations underlying CR resistance were investigated by whole genome sequencing. The parental lager strain was found to contain three distinct Saccharomyces cerevisiae (Sc)-type CHS6 (CHitin Synthase-related 6) alleles, two of which have one or two nonsense mutations in the open reading frame, leaving only one functional allele, whereas the functional allele was missing in the isolated CR-resistant strain. On the other hand, the Saccharomyces eubayanus-type CHS6 alleles shared by both the parental and mutant strains appeared to contribute poorly to chitin synthase-activating function. Therefore, the CR resistance of the mutant strain was attributable to the overall compromised activity of CHS6 gene products. The CR-resistant mutant cells exhibited less chitin production on the cell surface and smaller amounts of mannoprotein release into the medium. All these traits, in addition to the CR resistance, were complemented by the functional ScCHS6 gene. It is of great interest whether the frequent nonsense mutations found in ScCHS6 open reading frame in lager yeast strains are a consequence of the domestication process of lager yeast.
Collapse
Affiliation(s)
- Fumihiko Omura
- Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Motoshige Takagi
- Suntory System Technology Ltd., 2-1-5 Doujima, Kita-ku, Osaka-shi, Osaka 530-8204, Japan
| | - Yukiko Kodama
- Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| |
Collapse
|
26
|
Pham TA, Kyriacou BA, Schwerdt JG, Shirley NJ, Xing X, Bulone V, Little A. Composition and biosynthetic machinery of the Blumeria graminis f. sp. hordei conidia cell wall. ACTA ACUST UNITED AC 2020; 5:100029. [PMID: 32743145 PMCID: PMC7388969 DOI: 10.1016/j.tcsw.2019.100029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023]
Abstract
Infection of barley with the powdery mildew causal agent, Blumeria graminis f. sp. hordei (Bgh), can lead to devastating damage to barley crops. The recent emergence of fungicide resistance imposes a need to develop new antifungal strategies. The enzymes involved in cell wall biosynthesis are ideal targets for the development of fungicides. However, in order to narrow down any target proteins involved in cell wall formation, a greater understanding of the cell wall structure and composition is required. Here, we present a detailed carbohydrate analysis of the Bgh conidial cell wall, a full annotation of Carbohydrate Active enZymes (CAZy) in the Bgh genome, and a comprehensive expression profile of the genes involved in cell wall metabolism. Glycosidic linkage analysis has revealed that the cell wall polysaccharide fraction of Bgh conidia predominantly consists of glucosyl residues (63.1%) and has a greater proportion of galactopyranosyl residues compared to other species (8.5%). Trace amounts of xylosyl residues were also detected, which is unusual in ascomycetes. Transcripts of the genes involved in cell wall metabolism show high expression of chitin deacetylases, which assist fungi in evading the host defence system by deacetylating chitin to chitosan. The data presented suggest that the cell wall components of the conidia and the corresponding obligate biotrophic CAZy gene profile play a key role in the infection process.
Collapse
Affiliation(s)
- Trang A.T. Pham
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Bianca A. Kyriacou
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Julian G. Schwerdt
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Neil J. Shirley
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Xiaohui Xing
- Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Vincent Bulone
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Alan Little
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- Corresponding author.
| |
Collapse
|
27
|
Multiple cellular responses guarantee yeast survival in presence of the cell membrane/wall interfering agent sodium dodecyl sulfate. Biochem Biophys Res Commun 2020; 527:276-282. [PMID: 32446380 DOI: 10.1016/j.bbrc.2020.03.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/29/2020] [Indexed: 11/20/2022]
Abstract
Sodium dodecyl sulfate (SDS), a representative anionic surfactant, is a commonly used reagent in studies of the cell membrane and cell wall. However, the mechanisms through which SDS affects cellular functions have not yet been fully examined. Thus, to gain further insights into the cellular functions and responses to SDS, we tested a haploid library of Saccharomyces cerevisiae single-gene deletion mutants to identify genes required for tolerance to SDS. After two rounds of screening, we found 730 sensitive and 77 resistant mutants. Among the sensitive mutants, mitochondrial gene expression; the mitogen-activated protein kinase signaling pathway; the metabolic pathways involved in glycoprotein, lipid, purine metabolic process, oxidative phosphorylation, cellular amino acid biosynthesis and pentose phosphate pathway were found to be enriched. Additionally, we identified a set of transcription factors related to SDS responses. Among the resistant mutants, disruption of ribosome biogenesis and translation alleviated SDS-induced cytotoxicity. Collectively, our results provided new insights into the mechanisms through which SDS regulates the cell membrane or cell wall.
Collapse
|
28
|
de Sá NP, Pôssa AP, Perez P, Ferreira JMS, Fonseca NC, Lino CI, Cruz LB, de Oliveira RB, Rosa CA, Borelli BM, Mylonakis E, Fuchs BB, Johann S. Antifungal Activity Directed Toward the Cell Wall by 2-Cyclohexylidenhydrazo- 4-Phenyl-Thiazole Against Candida albicans. Infect Disord Drug Targets 2020; 19:428-438. [PMID: 29852876 DOI: 10.2174/1871526518666180531101605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/10/2018] [Accepted: 05/28/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The increasing incidence of invasive forms of candidiasis and resistance to antifungal therapy leads us to seek new and more effective antifungal compounds. OBJECTIVE To investigate the antifungal activity and toxicity as well as to evaluate the potential targets of 2- cyclohexylidenhydrazo-4-phenyl-thiazole (CPT) in Candida albicans. METHODS The antifungal activity of CPT against the survival of C. albicans was investigated in Caenorhabditis elegans. Additionally, we determined the effect of CPT on the inhibition of C. albicans adhesion capacity to buccal epithelial cells (BECs), the toxicity of CPT in mammalian cells, and the potential targets of CPT in C. albicans. RESULTS CPT exhibited a minimum inhibitory concentration (MIC) value of 0.4-1.9 µg/mL. Furthermore, CPT at high concentrations (>60 x MIC) showed no or low toxicity in HepG2 cells and <1% haemolysis in human erythrocytes. In addition, CPT decreased the adhesion capacity of yeasts to the BECs and prolonged the survival of C. elegans infected with C. albicans. Analysis of CPT-treated cells showed that their cell wall was thinner than that of untreated cells, especially the glucan layer. We found that there was a significantly lower quantity of 1,3-β-D-glucan present in CPT-treated cells than that in untreated cells. Assays performed on several mutant strains showed that the MIC value of CPT was high for its antifungal activity on yeasts with defective 1,3-β-glucan synthase. CONCLUSION In conclusion, CPT appears to target the cell wall of C. albicans, exhibits low toxicity in mammalian cells, and prolongs the survival of C. elegans infected with C. albicans.
Collapse
Affiliation(s)
- Nívea P de Sá
- Departamento de Microbiologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Antonio Carlos, 6627, Pampulha - CEP 31270-901, Belo Horizonte - MG, Brazil
| | - Ana P Pôssa
- Laboratorio de Microbiologia, Campus Centro- Oeste Dona Lindu, Universidade Federal de Sao Joao del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Pilar Perez
- Instituto de Biologia Fundamental y Genomica CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Jaqueline M S Ferreira
- Laboratorio de Microbiologia, Campus Centro- Oeste Dona Lindu, Universidade Federal de Sao Joao del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Nayara C Fonseca
- Departamento de Produtos Farmaceuticos, Faculdade de Farmacia, Universidade Federal de Minas Gerais, Belo Horizonte - MG, Brazil
| | - Cleudiomar I Lino
- Departamento de Produtos Farmaceuticos, Faculdade de Farmacia, Universidade Federal de Minas Gerais, Belo Horizonte - MG, Brazil
| | - Lana B Cruz
- Departamento de Microbiologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Antonio Carlos, 6627, Pampulha - CEP 31270-901, Belo Horizonte - MG, Brazil
| | - Renata B de Oliveira
- Departamento de Produtos Farmaceuticos, Faculdade de Farmacia, Universidade Federal de Minas Gerais, Belo Horizonte - MG, Brazil
| | - Carlos A Rosa
- Departamento de Microbiologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Antonio Carlos, 6627, Pampulha - CEP 31270-901, Belo Horizonte - MG, Brazil
| | - Beatriz M Borelli
- Departamento de Microbiologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Antonio Carlos, 6627, Pampulha - CEP 31270-901, Belo Horizonte - MG, Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, and Brown University, Providence, RI, United States
| | - Beth B Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, and Brown University, Providence, RI, United States
| | - Susana Johann
- Instituto de Biologia Fundamental y Genomica CSIC, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
29
|
Novačić A, Vučenović I, Primig M, Stuparević I. Non-coding RNAs as cell wall regulators in Saccharomyces cerevisiae. Crit Rev Microbiol 2020; 46:15-25. [PMID: 31994960 DOI: 10.1080/1040841x.2020.1715340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cell wall of Saccharomyces cerevisiae is an extracellular organelle crucial for preserving its cellular integrity and detecting environmental cues. The cell wall is composed of mannoproteins attached to a polysaccharide network and is continuously remodelled as cells undergo cell division, mating, gametogenesis or adapt to stressors. This makes yeast an excellent model to study the regulation of genes important for cell wall formation and maintenance. Given that certain yeast strains are pathogenic, a better understanding of their life cycle is of clinical relevance. This is why transcriptional regulatory mechanisms governing genes involved in cell wall biogenesis or maintenance have been the focus of numerous studies. However, little is known about the roles of long non-coding RNAs (lncRNAs), a class of transcripts that are thought to possess little or no protein coding potential, in controlling the expression of cell wall-related genes. This review outlines currently known mechanisms of lncRNA-mediated regulation of gene expression in S. cerevisiae and describes examples of lncRNA-regulated genes encoding cell wall proteins. We suggest that the association of currently annotated lncRNAs with the coding sequences and/or promoters of cell wall-related genes highlights a potential role for lncRNAs as important regulators of the yeast cell wall structure.
Collapse
Affiliation(s)
- Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Ivan Vučenović
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
30
|
van Leeuwe TM, Gerritsen A, Arentshorst M, Punt PJ, Ram AFJ. Rab GDP-dissociation inhibitor gdiA is an essential gene required for cell wall chitin deposition in Aspergillus niger. Fungal Genet Biol 2019; 136:103319. [PMID: 31884054 DOI: 10.1016/j.fgb.2019.103319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 01/19/2023]
Abstract
The cell wall is a distinctive feature of filamentous fungi, providing them with structural integrity and protection from both biotic and abiotic factors. Unlike plant cell walls, fungi rely on structurally strong hydrophobic chitin core for mechanical strength together with alpha- and beta-glucans, galactomannans and glycoproteins. Cell wall stress conditions are known to alter the cell wall through the signaling cascade of the cell wall integrity (CWI) pathway and can result in increased cell wall chitin deposition. A previously isolated set of Aspergillus niger cell wall mutants was screened for increased cell wall chitin deposition. UV-mutant RD15.8#16 was found to contain approximately 60% more cell wall chitin than the wild type. In addition to the chitin phenotype, RD15.8#16 exhibits a compact colony morphology and increased sensitivity towards SDS. RD15.8#16 was subjected to classical genetic approach for identification of the underlying causative mutation, using co-segregation analysis and SNP genotyping. Genome sequencing of RD15.8#16 revealed eight SNPs in open reading frames (ORF) which were individually checked for co-segregation with the associated phenotypes, and showed the potential relevance of two genes located on chromosome IV. In situ re-creation of these ORF-located SNPs in a wild type background, using CRISPR/Cas9 genome editing, showed the importance Rab GTPase dissociation inhibitor A (gdiA) for the phenotypes of RD15.8#16. An alteration in the 5' donor splice site of gdiA reduced pre-mRNA splicing efficiency, causing aberrant cell wall assembly and increased chitin levels, whereas gene disruption attempts showed that a full gene deletion of gdiA is lethal.
Collapse
Affiliation(s)
- Tim M van Leeuwe
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Anne Gerritsen
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Peter J Punt
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Arthur F J Ram
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
31
|
Zhao F, Li J, Lin K, Chen H, Lin Y, Zheng S, Liang S, Han S. Genome-wide screening of Saccharomyces cerevisiae deletion mutants reveals cellular processes required for tolerance to the cell wall antagonist calcofluor white. Biochem Biophys Res Commun 2019; 518:1-6. [PMID: 31427087 DOI: 10.1016/j.bbrc.2019.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 11/26/2022]
Abstract
We screened a haploid library of Saccharomyces cerevisiae single-gene deletion mutants to identify nonessential genes associated with increased sensitivity to or resistance against the cell wall antagonist calcofluor white. Through a genome-wide screen, we isolated 537 strains that had an altered growth rate relative to wild type, of which 485 showed increased sensitivity and 52 showed increased resistance to calcofluor white. The MAPK signaling pathway, N-glycan biosynthesis, endocytosis, vacuole acidification, autophagy, and the sulfur relay system were identified as being associated with calcofluor white sensitivity. Resistance genes were mainly involved in chitin metabolism and the RIM101 pathway or encoded several components of the ESCRT complexes or related to cysteine and methionine metabolism and RNA degradation. Further investigation indicated a clear global response network that S. cerevisiae relies on in the presence of the cell wall antagonist calcofluor white, which may help us to understand fungal cell wall remodeling and the mechanisms of toxicity of calcofluor white with respect to eukaryotic cells.
Collapse
Affiliation(s)
- Fengguang Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Jingwen Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Kerui Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hong Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
32
|
The Aspergillus flavus rtfA Gene Regulates Plant and Animal Pathogenesis and Secondary Metabolism. Appl Environ Microbiol 2019; 85:AEM.02446-18. [PMID: 30635379 DOI: 10.1128/aem.02446-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/31/2018] [Indexed: 02/04/2023] Open
Abstract
Aspergillus flavus is an opportunistic fungal plant and human pathogen and a producer of mycotoxins, including aflatoxin B1 (AFB1). As part of our ongoing studies to elucidate the biological functions of the A. flavus rtfA gene, we examined its role in the pathogenicity of both plant and animal model systems. rtfA encodes a putative RNA polymerase II (Pol II) transcription elongation factor previously characterized in Saccharomyces cerevisiae, Aspergillus nidulans, and Aspergillus fumigatus, where it was shown to regulate several important cellular processes, including morphogenesis and secondary metabolism. In addition, an initial study in A. flavus indicated that rtfA also influences development and production of AFB1; however, its effect on virulence is unknown. The current study reveals that the rtfA gene is indispensable for normal pathogenicity in plants when using peanut seed as an infection model, as well as in animals, as shown in the Galleria mellonella infection model. Interestingly, rtfA positively regulates several processes known to be necessary for successful fungal invasion and colonization of host tissue, such as adhesion to surfaces, protease and lipase activity, cell wall composition and integrity, and tolerance to oxidative stress. In addition, metabolomic analysis revealed that A. flavus rtfA affects the production of several secondary metabolites, including AFB1, aflatrem, leporins, aspirochlorine, ditryptophenaline, and aflavinines, supporting a role of rtfA as a global regulator of secondary metabolism. Heterologous complementation of an A. flavus rtfA deletion strain with rtfA homologs from A. nidulans or S. cerevisiae fully rescued the wild-type phenotype, indicating that these rtfA homologs are functionally conserved among these three species.IMPORTANCE In this study, the epigenetic global regulator rtfA, which encodes a putative RNA-Pol II transcription elongation factor-like protein, was characterized in the mycotoxigenic and opportunistic pathogen A. flavus Specifically, its involvement in A. flavus pathogenesis in plant and animal models was studied. Here, we show that rtfA positively regulates A. flavus virulence in both models. Furthermore, rtfA-dependent effects on factors necessary for successful invasion and colonization of host tissue by A. flavus were also assessed. Our study indicates that rtfA plays a role in A. flavus adherence to surfaces, hydrolytic activity, normal cell wall formation, and response to oxidative stress. This study also revealed a profound effect of rtfA on the metabolome of A. flavus, including the production of potent mycotoxins.
Collapse
|
33
|
López-Fernández L, Sanchis M, Navarro-Rodríguez P, Nicolás FE, Silva-Franco F, Guarro J, Garre V, Navarro-Mendoza MI, Pérez-Arques C, Capilla J. Understanding Mucor circinelloides pathogenesis by comparative genomics and phenotypical studies. Virulence 2018; 9:707-720. [PMID: 29436903 PMCID: PMC5955452 DOI: 10.1080/21505594.2018.1435249] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The increasing number of infections by species of Mucorales and their high mortality constitute an important concern for public health. This study aims to decipher the genetic basis of Mucor circinelloides pathogenicity, which displays virulence in a strain dependent manner. Assuming that genetic differences between strains may be linked to different pathotypes, we have conducted a study to explore genes responsible for virulence in M. circinelloides by whole genome sequencing of the avirulent strain NRRL3631 and comparison with the virulent strain CBS277.49. This genome analysis revealed 773 truncated, discontiguous and absent genes in the NRRL3631 strain. We also examined phenotypic traits resulting in reduced heat stress tolerance, chitosan content and lower susceptibility to toxic compounds (calcofluor white and sodium dodecyl sulphate) in the virulent strain, suggesting the influence of cell wall on pathogenesis. Based on these results, we focused on studying extracellular protein-coding genes by gene deletion and further pathotype characterization of mutants in murine models of pulmonary and systemic infection. Deletion of gene ID112092, which codes for a hypothetical extracellular protein of unknown function, resulted in significant reduction of virulence. Although pathogenesis is a multifactorial process, these findings highlight the crucial role of surface and secreted proteins in M. circinelloides virulence and should promote further studies of other differential genes.
Collapse
Affiliation(s)
- Loida López-Fernández
- a Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili and Institut d'Investigació Sanitària Pere Virgili (IISPV) , Reus , Spain
| | - Marta Sanchis
- a Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili and Institut d'Investigació Sanitària Pere Virgili (IISPV) , Reus , Spain
| | - Patricia Navarro-Rodríguez
- a Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili and Institut d'Investigació Sanitària Pere Virgili (IISPV) , Reus , Spain
| | - Francisco E Nicolás
- b Departamento de Genética y Microbiología , Facultad de Biología, Universidad de Murcia , Murcia , Spain
| | | | - Josep Guarro
- a Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili and Institut d'Investigació Sanitària Pere Virgili (IISPV) , Reus , Spain
| | - Victoriano Garre
- b Departamento de Genética y Microbiología , Facultad de Biología, Universidad de Murcia , Murcia , Spain
| | | | - Carlos Pérez-Arques
- b Departamento de Genética y Microbiología , Facultad de Biología, Universidad de Murcia , Murcia , Spain
| | - Javier Capilla
- a Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili and Institut d'Investigació Sanitària Pere Virgili (IISPV) , Reus , Spain
| |
Collapse
|
34
|
Sze H, Chanroj S. Plant Endomembrane Dynamics: Studies of K +/H + Antiporters Provide Insights on the Effects of pH and Ion Homeostasis. PLANT PHYSIOLOGY 2018; 177:875-895. [PMID: 29691301 PMCID: PMC6053008 DOI: 10.1104/pp.18.00142] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 05/17/2023]
Abstract
Plants remodel their cells through the dynamic endomembrane system. Intracellular pH is important for membrane trafficking, but the determinants of pH homeostasis are poorly defined in plants. Electrogenic proton (H+) pumps depend on counter-ion fluxes to establish transmembrane pH gradients at the plasma membrane and endomembranes. Vacuolar-type H+-ATPase-mediated acidification of the trans-Golgi network is crucial for secretion and membrane recycling. Pump and counter-ion fluxes are unlikely to fine-tune pH; rather, alkali cation/H+ antiporters, which can alter pH and/or cation homeostasis locally and transiently, are prime candidates. Plants have a large family of predicted cation/H+ exchangers (CHX) of obscure function, in addition to the well-studied K+(Na+)/H+ exchangers (NHX). Here, we review the regulation of cytosolic and vacuolar pH, highlighting the similarities and distinctions of NHX and CHX members. In planta, alkalinization of the trans-Golgi network or vacuole by NHXs promotes membrane trafficking, endocytosis, cell expansion, and growth. CHXs localize to endomembranes and/or the plasma membrane and contribute to male fertility, pollen tube guidance, pollen wall construction, stomatal opening, and, in soybean (Glycine max), tolerance to salt stress. Three-dimensional structural models and mutagenesis of Arabidopsis (Arabidopsis thaliana) genes have allowed us to infer that AtCHX17 and AtNHX1 share a global architecture and a translocation core like bacterial Na+/H+ antiporters. Yet, the presence of distinct residues suggests that some CHXs differ from NHXs in pH sensing and electrogenicity. How H+ pumps, counter-ion fluxes, and cation/H+ antiporters are linked with signaling and membrane trafficking to remodel membranes and cell walls awaits further investigation.
Collapse
Affiliation(s)
- Heven Sze
- Department of Cell Biology and Molecular Genetics and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Salil Chanroj
- Department of Biotechnology, Burapha University, Chon-Buri 20131, Thailand
| |
Collapse
|
35
|
Yeast Cell Wall Chitin Reduces Wine Haze Formation. Appl Environ Microbiol 2018; 84:AEM.00668-18. [PMID: 29703738 DOI: 10.1128/aem.00668-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 11/20/2022] Open
Abstract
Protein haze formation in bottled wines is a significant concern for the global wine industry, and wine clarification before bottling is therefore a common but expensive practice. Previous studies have shown that wine yeast strains can reduce haze formation through the secretion of certain mannoproteins, but it has been suggested that other yeast-dependent haze protective mechanisms exist. On the other hand, the addition of chitin has been shown to reduce haze formation, likely because grape chitinases have been shown to be the major contributors to haze. In this study, Chardonnay grape must fermented by various yeast strains resulted in wines with different protein haze levels, indicating differences in haze-protective capacities of the strains. The cell wall chitin levels of these strains were determined, and a strong correlation between cell wall chitin levels and haze protection capability was observed. To further evaluate the mechanism of haze protection, Escherichia coli-produced green fluorescent protein (GFP)-tagged grape chitinase was shown to bind efficiently to yeast cell walls in a cell wall chitin concentration-dependent manner, while commercial chitinase was removed from synthetic wine in quantities that also correlated with the cell wall chitin levels of the strains. Our findings suggest a new mechanism of reducing wine haze, and we propose a strategy for optimizing wine yeast strains to improve wine clarification.IMPORTANCE In this study, we establish a new mechanism by which wine yeast strains can impact the protein haze formation of wines, and we demonstrate that yeast cell wall chitin binds grape chitinase in a chitin concentration-dependent manner. We also show that yeast can remove this haze-forming protein from wine. Chitin has in the past been shown to efficiently reduce wine haze formation when added to the wine in high concentration as a clarifying agent. Our data suggest that the selection of yeast strains with high levels of cell wall chitin can reduce protein haze. We also investigate how yeast cell wall chitin levels are affected by environmental conditions.
Collapse
|
36
|
High temperature induced disruption of the cell wall integrity and structure in Pleurotus ostreatus mycelia. Appl Microbiol Biotechnol 2018; 102:6627-6636. [PMID: 29846777 DOI: 10.1007/s00253-018-9090-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 10/16/2022]
Abstract
Fungal cells are surrounded by a tight cell wall to protect them from harmful environmental conditions and to resist lysis. The synthesis and assembly determine the shape, structure, and integrity of the cell wall during the process of mycelial growth and development. High temperature is an important abiotic stress, which affects the synthesis and assembly of cell walls. In the present study, the chitin and β-1,3-glucan concentrations in the cell wall of Pleurotus ostreatus mycelia were changed after high-temperature treatment. Significantly higher chitin and β-1,3-glucan concentrations were detected at 36 °C than those incubated at 28 °C. With the increased temperature, many aberrant chitin deposition patches occurred, and the distribution of chitin in the cell wall was uneven. Moreover, high temperature disrupts the cell wall integrity, and P. ostreatus mycelia became hypersensitive to cell wall-perturbing agents at 36 °C. The cell wall structure tended to shrink or distorted after high temperature. The cell walls were observed to be thicker and looser by using transmission electron microscopy. High temperature can decrease the mannose content in the cell wall and increase the relative cell wall porosity. According to infrared absorption spectrum, high temperature broke or decreased the glycosidic linkages. Finally, P. ostreatus mycelial cell wall was easily degraded by lysing enzymes after high-temperature treatment. In other words, the cell wall destruction caused by high temperature may be a breakthrough for P. ostreatus to be easily infected by Trichoderma.
Collapse
|
37
|
Li XE, Wang JJ, Phornsanthia S, Yin X, Li Q. Strengthening of Cell Wall Structure Enhances Stress Resistance and Fermentation Performance in Lager Yeast. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2014-0320-01] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xin-Er Li
- The Key Laboratory of Industrial Biotechnology, and Lab of Brewing Science and Technology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jin-Jing Wang
- The Key Laboratory of Industrial Biotechnology, and Lab of Brewing Science and Technology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Supatcha Phornsanthia
- Biotechnology Department of Argo-Industry Faculty, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Xiangsheng Yin
- Cargill Malt, McGinty Road West, MS 135, Wayzata, MN 55391
| | - Qi Li
- The Key Laboratory of Industrial Biotechnology, and Lab of Brewing Science and Technology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
38
|
Disruption of the cell wall integrity gene ECM33 results in improved fermentation by wine yeast. Metab Eng 2018; 45:255-264. [DOI: 10.1016/j.ymben.2017.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/24/2017] [Accepted: 12/26/2017] [Indexed: 11/21/2022]
|
39
|
Molon M, Woznicka O, Zebrowski J. Cell wall biosynthesis impairment affects the budding lifespan of the Saccharomyces cerevisiae yeast. Biogerontology 2017; 19:67-79. [PMID: 29189912 PMCID: PMC5765204 DOI: 10.1007/s10522-017-9740-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022]
Abstract
The Saccharomyces cerevisiae yeast is one of the most widely used model in studies of cellular and organismal biology, including as aging and proliferation. Although several constraints of aging and budding lifespan have been identified, these processes have not yet been fully understood. Previous studies of aging in yeast have focused mostly on the molecular basics of the underlying mechanisms, while physical aspects, particularly those related to the cell wall, were rather neglected. In this paper, we examine for the first time, to our knowledge, the impact of cell wall biosynthesis disturbances on the lifespan in the budding yeast. We have used a set of cell wall mutants, including knr4Δ, cts1Δ, chs3Δ, fks1Δ and mnn9Δ, which affect biosynthesis of all major cell wall compounds. Our results indicated that impairment of chitin biosynthesis and cell wall protein mannosylation reduced the budding lifespan, while disruption in the 1,3-β-glucan synthase activity had no adverse effect on that parameter. The impact varied in the severity and the most notable effect was observed for the mnn9Δ mutant. What was interesting, in the case of the dysfunction of the Knr4 protein playing the role of the transcriptional regulator of cell wall chitin and glucan synthesis, the lifespan increased significantly. We also report the phenotypic characteristics of cell wall-associated mutants as revealed by imaging of the cell wall using transmission electron microscopy, scanning electron microscopy and atomic force microscopy. In addition, our findings support the conviction that achievement of the state of hypertrophy may not be the only factor that determines the budding lifespan.
Collapse
Affiliation(s)
- Mateusz Molon
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Olga Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Jacek Zebrowski
- Department of Plant Physiology, Institute of Biotechnology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
40
|
Wofford JD, Park J, McCormick SP, Chakrabarti M, Lindahl PA. Ferric ions accumulate in the walls of metabolically inactivating Saccharomyces cerevisiae cells and are reductively mobilized during reactivation. Metallomics 2017; 8:692-708. [PMID: 27188213 DOI: 10.1039/c6mt00070c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mössbauer and EPR spectra of fermenting yeast cells before and after cell wall (CW) digestion revealed that CWs accumulated iron as cells transitioned from exponential to post-exponential growth. Most CW iron was mononuclear nonheme high-spin (NHHS) Fe(III), some was diamagnetic and some was superparamagnetic. A significant portion of CW Fe was removable by EDTA. Simulations using an ordinary-differential-equations-based model suggested that cells accumulate Fe as they become metabolically inactive. When dormant Fe-loaded cells were metabolically reactivated in Fe-deficient bathophenanthroline disulfonate (BPS)-treated medium, they grew using Fe that had been mobilized from their CWs AND using trace amounts of Fe in the Fe-deficient medium. When grown in Fe-deficient medium, Fe-starved cells contained the lowest cellular Fe concentrations reported for a eukaryotic cell. During metabolic reactivation of Fe-loaded dormant cells, Fe(III) ions in the CWs of these cells were mobilized by reduction to Fe(II), followed by release from the CW and reimport into the cell. BPS short-circuited this process by chelating mobilized and released Fe(II) ions before reimport; the resulting Fe(II)(BPS)3 complex adsorbed on the cell surface. NHHS Fe(II) ions appeared transiently during mobilization, suggesting that these ions were intermediates in this process. In the presence of chelators and at high pH, metabolically inactive cells leached CW Fe; this phenomenon probably differs from metabolic mobilization. The iron regulon, as reported by Fet3p levels, was not expressed during post-exponential conditions; Fet3p was maximally expressed in exponentially growing cells. Decreased expression of the iron regulon and metabolic decline combine to promote CW Fe accumulation.
Collapse
Affiliation(s)
- Joshua D Wofford
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
| | - Jinkyu Park
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
| | - Sean P McCormick
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
| | - Mrinmoy Chakrabarti
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
| | - Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA. and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
41
|
Sun D, Cao H, Shi Y, Huang P, Dong B, Liu X, Lin F, Lu J. The regulatory factor X protein MoRfx1 is required for development and pathogenicity in the rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2017; 18:1075-1088. [PMID: 27434465 PMCID: PMC6638216 DOI: 10.1111/mpp.12461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Magnaporthe oryzae is a cereal pathogen causing 20%-30% rice yield losses. Regulatory factor X transcription factors are highly conserved proteins with diverse functions among organisms. Here, we show that MoRfx1 is required for cell division, development and pathogenicity in M. oryzae. Deletion of MoRFX1 resulted in reduced growth and conidiation, decreased appressorium turgor and impaired virulence. ΔMorfx1 displayed increased sensitivity to UV light, four DNA-damaging agents and three cell wall-perturbing compounds. However, ΔMorfx1 showed decreased sensitivity to bleomycin, a DNA/cell wall-damaging agent, and increased chitin content of the cell wall in vegetative mycelium. In addition, cell division speed was reduced in ΔMorfx1, and ΔMorfx1 did not produce three-celled conidia. RNA-sequencing and quantitative polymerase chain reaction analyses suggested that MoRfx1 has bipartite functions in the control of the expression of genes required for cell division and chitin metabolism, not only as a transcriptional repressor, but also as a transcriptional activator. In particular, the expression of chitin deacetylase genes MoCDA2 and MoCDA1 was greatly down-regulated in ΔMorfx1, and deletion of MoCDA2 and MoCDA1, similar to ΔMorfx1, increased resistance to bleomycin. Taken together, our results indicate that MoRFX1 regulates development and pathogenicity by modulating the expression of genes involved in cell division and cell wall integrity.
Collapse
Affiliation(s)
- Dandan Sun
- State Key Laboratory for Rice Biology, College of Life SciencesZhejiang UniversityHangzhouZhejiang Province310058China
| | - Huijuan Cao
- State Key Laboratory for Rice Biology, College of Life SciencesZhejiang UniversityHangzhouZhejiang Province310058China
- State Key Laboratory for Rice BiologyBiotechnology Institute, Zhejiang UniversityHangzhouZhejiang Province310058China
| | - Yongkai Shi
- State Key Laboratory for Rice Biology, College of Life SciencesZhejiang UniversityHangzhouZhejiang Province310058China
| | - Pengyun Huang
- State Key Laboratory for Rice Biology, College of Life SciencesZhejiang UniversityHangzhouZhejiang Province310058China
| | - Bo Dong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhouZhejiang Province310021China
| | - Xiaohong Liu
- State Key Laboratory for Rice BiologyBiotechnology Institute, Zhejiang UniversityHangzhouZhejiang Province310058China
| | - Fucheng Lin
- State Key Laboratory for Rice BiologyBiotechnology Institute, Zhejiang UniversityHangzhouZhejiang Province310058China
| | - Jianping Lu
- State Key Laboratory for Rice Biology, College of Life SciencesZhejiang UniversityHangzhouZhejiang Province310058China
| |
Collapse
|
42
|
Abstract
The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.
Collapse
Affiliation(s)
- Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| | | | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| |
Collapse
|
43
|
Gow NAR, Latge JP, Munro CA. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0035-2016. [PMID: 28513415 PMCID: PMC11687499 DOI: 10.1128/microbiolspec.funk-0035-2016] [Citation(s) in RCA: 643] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.
Collapse
Affiliation(s)
- Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| | | | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| |
Collapse
|
44
|
Hill TW, Loprete DM, Momany M, Ha Y, Harsch LM, Livesay JA, Mirchandani A, Murdock JJ, Vaughan MJ, Watt MB. Isolation of cell wall mutants inAspergillus nidulansby screening for hypersensitivity to Calcofluor White. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832675] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Terry W. Hill
- Department of Biology, Rhodes College, Memphis, Tennessee 38112
| | | | | | - Youngsil Ha
- Department of Plant Biology, The University of Georgia, Athens, Georgia 30602
| | | | | | | | | | | | - Mridula B. Watt
- Departments of Biology and Chemistry, Rhodes College, Memphis, Tennessee 38112
| |
Collapse
|
45
|
Okada H, Kono K, Neiman AM, Ohya Y. Examination and Disruption of the Yeast Cell Wall. Cold Spring Harb Protoc 2016; 2016:2016/8/pdb.top078659. [PMID: 27480724 DOI: 10.1101/pdb.top078659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The cell wall of Saccharomyces cerevisiae is a complicated extracellular organelle. Although the barrier may seem like a technical nuisance for researchers studying intracellular biomolecules or conditions, the rigid wall is an essential aspect of the yeast cell. Without it, yeast cells are unable to proliferate or carry out their life cycle. The chemical composition of the cell wall and the biosynthetic pathways and signal transduction mechanisms involved in cell wall remodeling have been studied extensively, but many unanswered questions remain. This introduction describes techniques for investigating abnormalities in the cell and spore walls and performing cell wall disruption.
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Keiko Kono
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi Prefecture 467-8601, Japan
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| |
Collapse
|
46
|
Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:11-31. [PMID: 26721269 DOI: 10.1007/978-3-319-25304-6_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The wall of the yeast Saccharomyces cerevisiae is a shell of about 120 nm thick, made of two distinct layers, which surrounds the cell. The outer layer is constituted of highly glycosylated proteins and the inner layer is composed of β-glucan and chitin. These two layers are interconnected through covalent linkages leading to a supramolecular architecture that is characterized by physical and chemical properties including rigidity, porosity and biosorption. The later property results from the presence of highly negative charged phosphate and carboxylic groups of the cell wall proteins, allowing the cell wall to act as an efficient barrier to metals ions, toxins and organic compounds. An intimate connection between cell wall and plasma membrane is indicated by the fact that changes in membrane fluidity results in change in cell wall nanomechanical properties. Finally, cell wall contributes to transport processes through the use of dedicated cell wall mannoproteins, as it is the case for Fit proteins implicated in the siderophore-iron bound transport and the Tir/Dan proteins family in the uptake of sterols.
Collapse
|
47
|
García R, Botet J, Rodríguez-Peña JM, Bermejo C, Ribas JC, Revuelta JL, Nombela C, Arroyo J. Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics 2015; 16:683. [PMID: 26341223 PMCID: PMC4560923 DOI: 10.1186/s12864-015-1879-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
Background The fungal cell wall forms a compact network whose integrity is essential for cell morphology and viability. Thus, fungal cells have evolved mechanisms to elicit adequate adaptive responses when cell wall integrity (CWI) is compromised. Functional genomic approaches provide a unique opportunity to globally characterize these adaptive mechanisms. To provide a global perspective on these CWI regulatory mechanisms, we developed chemical-genomic profiling of haploid mutant budding yeast cells to systematically identify in parallel those genes required to cope with stresses interfering the cell wall by different modes of action: β-1,3 glucanase and chitinase activities (zymolyase), inhibition of β-1,3 glucan synthase (caspofungin) and binding to chitin (Congo red). Results Measurement of the relative fitness of the whole collection of 4786 haploid budding yeast knock-out mutants identified 222 mutants hypersensitive to caspofungin, 154 mutants hypersensitive to zymolyase, and 446 mutants hypersensitive to Congo red. Functional profiling uncovered both common and specific requirements to cope with different cell wall damages. We identified a cluster of 43 genes highly important for the integrity of the cell wall as the common “signature of cell wall maintenance (CWM)”. This cluster was enriched in genes related to vesicular trafficking and transport, cell wall remodeling and morphogenesis, transcription and chromatin remodeling, signal transduction and RNA metabolism. Although the CWI pathway is the main MAPK pathway regulating cell wall integrity, the collaboration with other signal transduction pathways like the HOG pathway and the invasive growth pathway is also required to cope with the cell wall damage depending on the nature of the stress. Finally, 25 mutant strains showed enhanced caspofungin resistance, including 13 that had not been previously identified. Only three of them, wsc1Δ, elo2Δ and elo3Δ, showed a significant decrease in β-1,3-glucan synthase activity. Conclusions This work provides a global perspective about the mechanisms involved in cell wall stress adaptive responses and the cellular functions required for cell wall integrity. The results may be useful to uncover new potential antifungal targets and develop efficient antifungal strategies by combination of two drugs, one targeting the cell wall and the other interfering with the adaptive mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1879-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raúl García
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Javier Botet
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - José Manuel Rodríguez-Peña
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Clara Bermejo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Juan Carlos Ribas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain. .,Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Universidad de Salamanca, 37007, Salamanca, Spain.
| | - José Luis Revuelta
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - César Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Javier Arroyo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| |
Collapse
|
48
|
Rossouw D, Bagheri B, Setati ME, Bauer FF. Co-Flocculation of Yeast Species, a New Mechanism to Govern Population Dynamics in Microbial Ecosystems. PLoS One 2015; 10:e0136249. [PMID: 26317200 PMCID: PMC4552943 DOI: 10.1371/journal.pone.0136249] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/31/2015] [Indexed: 01/22/2023] Open
Abstract
Flocculation has primarily been studied as an important technological property of Saccharomyces cerevisiae yeast strains in fermentation processes such as brewing and winemaking. These studies have led to the identification of a group of closely related genes, referred to as the FLO gene family, which controls the flocculation phenotype. All naturally occurring S. cerevisiae strains assessed thus far possess at least four independent copies of structurally similar FLO genes, namely FLO1, FLO5, FLO9 and FLO10. The genes appear to differ primarily by the degree of flocculation induced by their expression. However, the reason for the existence of a large family of very similar genes, all involved in the same phenotype, has remained unclear. In natural ecosystems, and in wine production, S. cerevisiae growth together and competes with a large number of other Saccharomyces and many more non-Saccharomyces yeast species. Our data show that many strains of such wine-related non-Saccharomyces species, some of which have recently attracted significant biotechnological interest as they contribute positively to fermentation and wine character, were able to flocculate efficiently. The data also show that both flocculent and non-flocculent S. cerevisiae strains formed mixed species flocs (a process hereafter referred to as co-flocculation) with some of these non-Saccharomyces yeasts. This ability of yeast strains to impact flocculation behaviour of other species in mixed inocula has not been described previously. Further investigation into the genetic regulation of co-flocculation revealed that different FLO genes impact differently on such adhesion phenotypes, favouring adhesion with some species while excluding other species from such mixed flocs. The data therefore strongly suggest that FLO genes govern the selective association of S. cerevisiae with specific species of non-Saccharomyces yeasts, and may therefore be drivers of ecosystem organisational patterns. Our data provide, for the first time, insights into the role of the FLO gene family beyond intraspecies cellular association, and suggest a wider evolutionary role for the FLO genes. Such a role would explain the evolutionary persistence of a large multigene family of genes with apparently similar function.
Collapse
Affiliation(s)
- Debra Rossouw
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Bahareh Bagheri
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Mathabatha Evodia Setati
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Florian Franz Bauer
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch, 7600, South Africa
- * E-mail:
| |
Collapse
|
49
|
A Genetic Screen for Saccharomyces cerevisiae Mutants That Fail to Enter Quiescence. G3-GENES GENOMES GENETICS 2015; 5:1783-95. [PMID: 26068574 PMCID: PMC4528334 DOI: 10.1534/g3.115.019091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Budding yeast begin the transition to quiescence by prolonging G1 and accumulating limited nutrients. They undergo asymmetric cell divisions, slow cellular expansion, acquire significant stress tolerance and construct elaborate cell walls. These morphologic changes give rise to quiescent (Q) cells, which can be distinguished from three other cell types in a stationary phase culture by flow cytometry. We have used flow cytometry to screen for genes that are required to obtain the quiescent cell fraction. We find that cell wall integrity is critical and these genes may help define quiescence-specific features of the cell wall. Genes required to evade the host innate immune response are common. These may be new targets for antifungal drugs. Acquired thermotolerance is also a common property, and we show that the stress-response transcription factors Msn2 and Msn4 promote quiescence. Many other pathways also contribute, including a subset of genes involved in autophagy, ubiquitin-mediated proteolysis, DNA replication, bud site selection, and cytokinesis.
Collapse
|
50
|
Liesche J, Marek M, Günther-Pomorski T. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells. Front Microbiol 2015; 6:107. [PMID: 25717323 PMCID: PMC4324143 DOI: 10.3389/fmicb.2015.00107] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/27/2015] [Indexed: 11/13/2022] Open
Abstract
Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.
Collapse
Affiliation(s)
- Johannes Liesche
- Department of Plant and Environmental Sciences, University of Copenhagen Copenhagen, Denmark
| | - Magdalena Marek
- Department of Plant and Environmental Sciences, University of Copenhagen Copenhagen, Denmark
| | - Thomas Günther-Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|