1
|
Liu Q, Wang J, Boyd BJ. Peptide-based biosensors. Talanta 2015; 136:114-27. [PMID: 25702993 DOI: 10.1016/j.talanta.2014.12.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/26/2014] [Accepted: 12/18/2014] [Indexed: 12/24/2022]
Abstract
Peptides have been used as components in biological analysis and fabrication of novel biosensors for a number of reasons, including mature synthesis protocols, diverse structures and as highly selective substrates for enzymes. Bio-conjugation strategies can provide an efficient way to convert interaction information between peptides and analytes into a measurable signal, which can be used for fabrication of novel peptide-based biosensors. Many sensitive fluorophores can respond rapidly to environmental changes and stimuli manifest as a change in spectral characteristics, hence environmentally-sensitive fluorophores have been widely used as signal markers to conjugate to peptides to construct peptide-based molecular sensors. Additionally, nanoparticles, fluorescent polymers, graphene and near infrared dyes are also used as peptide-conjugated signal markers. On the other hand, peptides may play a generalist role in peptide-based biosensors. Peptides have been utilized as bio-recognition elements to bind various analytes including proteins, nucleic acid, bacteria, metal ions, enzymes and antibodies in biosensors. The selectivity of peptides as an enzymatic substrate has thus been utilized to construct enzyme sensors or enzyme-activity sensors. In addition, progress on immobilization and microarray techniques of peptides has facilitated the progress and commercial application of chip-based peptide biosensors in clinical diagnosis.
Collapse
Affiliation(s)
- Qingtao Liu
- Drug Delivery Disposition and Dynamics-Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville 3052, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville 3052, VIC, Australia
| | - Jinfeng Wang
- Australian Future Fibres Research and Innovation Centre, Institute for Frontier Materials, Deakin University, Geelong 3217, VIC, Australia
| | - Ben J Boyd
- Drug Delivery Disposition and Dynamics-Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville 3052, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville 3052, VIC, Australia.
| |
Collapse
|
2
|
Leung KCF, Ho HP, Kwan YW, Kong SK. Immunoassays using polypeptide conjugate binders with tuned affinity. Expert Rev Mol Diagn 2014; 10:863-7. [DOI: 10.1586/erm.10.80] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Ślósarczyk AT, Baltzer L. The molecular recognition of phosphorylated proteins by designed polypeptides conjugated to a small molecule that binds phosphate. Org Biomol Chem 2011; 9:7697-704. [PMID: 21979575 DOI: 10.1039/c1ob06154b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conjugation of polypeptides from a designed set to the small molecule ligand 3,5-bis[[bis(2-pyridylmethyl)amino]methyl]benzoic acid, which in the presence of Zn(2+) ions binds inorganic phosphate, has been shown to provide a polypeptide conjugate that binds α-casein, a multiply phosphorylated protein, with a dissociation constant K(D) of 17 nM. The measured affinity is more than three orders of magnitude higher than that of the small molecule ligand for phosphate and the binding of 500 nM of α-casein was not inhibited by 10 mM phosphate buffer, providing a 2000-fold excess of phosphate ion over protein. The selectivity for phosphoproteins was demonstrated by extraction of α-casein from solutions of various complexity, including milk and human serum spiked with α-casein. In addition to α-casein, β-casein was also recognized but not ovoalbumin. Conjugation of a polypeptide to the zinc chelating ligand was therefore shown to give rise to dramatically increased affinity and also increased selectivity. A set of polypeptide conjugates is expected to be able to capture a large number of phosphorylated proteins, perhaps all, and in combination with electrophoresis or mass spectrometry become a powerful tool for the monitoring of phosphorylation levels. The presented binder can easily be attached to various types of surfaces; here demonstrated for the case of polystyrene particles. The example of phosphoproteins was selected since posttranslational phosphorylation is of fundamental importance in cell biology due to its role in signaling and therefore of great interest in drug development. The reported concept for binder development is, however, quite general and high-affinity binders can conveniently be developed for a variety of proteins including those with posttranslational modifications for which small molecule recognition elements are available.
Collapse
Affiliation(s)
- Adam T Ślósarczyk
- Department of Biochemistry and Organic Chemistry, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
4
|
Crossing borders to bind proteins--a new concept in protein recognition based on the conjugation of small organic molecules or short peptides to polypeptides from a designed set. Anal Bioanal Chem 2011; 400:1653-64. [PMID: 21461620 PMCID: PMC3093540 DOI: 10.1007/s00216-011-4905-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/10/2011] [Accepted: 03/12/2011] [Indexed: 02/05/2023]
Abstract
A new concept for protein recognition and binding is highlighted. The conjugation of small organic molecules or short peptides to polypeptides from a designed set provides binder molecules that bind proteins with high affinities, and with selectivities that are equal to those of antibodies. The small organic molecules or peptides need to bind the protein targets but only with modest affinities and selectivities, because conjugation to the polypeptides results in molecules with dramatically improved binder performance. The polypeptides are selected from a set of only sixteen sequences designed to bind, in principle, any protein. The small number of polypeptides used to prepare high-affinity binders contrasts sharply with the huge libraries used in binder technologies based on selection or immunization. Also, unlike antibodies and engineered proteins, the polypeptides have unordered three-dimensional structures and adapt to the proteins to which they bind. Binder molecules for the C-reactive protein, human carbonic anhydrase II, acetylcholine esterase, thymidine kinase 1, phosphorylated proteins, the D-dimer, and a number of antibodies are used as examples to demonstrate that affinities are achieved that are higher than those of the small molecules or peptides by as much as four orders of magnitude. Evaluation by pull-down experiments and ELISA-based tests in human serum show selectivities to be equal to those of antibodies. Small organic molecules and peptides are readily available from pools of endogenous ligands, enzyme substrates, inhibitors or products, from screened small molecule libraries, from phage display, and from mRNA display. The technology is an alternative to established binder concepts for applications in drug development, diagnostics, medical imaging, and protein separation.
Collapse
|
5
|
Tegler LT, Fromell K, Jonsson BH, Viljanen J, Winander C, Carlsson J, Baltzer L. Polypeptide conjugate binders that discriminate between two isoforms of human carbonic anhydrase in human blood. Chembiochem 2011; 12:559-66. [PMID: 21264993 DOI: 10.1002/cbic.201000556] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Indexed: 01/02/2023]
Abstract
Two binder candidates 4-C37L34-B and 3-C15L8-B from a 16-membered set of 42-residue polypeptide conjugates designed to bind human carbonic anhydrase II (HCAII), were shown to bind HCAII with high affinity in a fluorescence-based screening assay. Two carbonic anhydrase isoforms with 60 % homology exist in human blood with HCAI being present in five- to sevenfold excess over HCAII. The ability of the binders to discriminate between HCAI and HCAII was evaluated with regard to what selectivity could be achieved by the conjugation of polypeptides from a 16-membered set to a small organic molecule that binds both isoforms with similar affinities. The polypeptide conjugate 4-C37L34-B bound HCAII with a K(D) of 17 nM and HCAI with a K(D) of 470 nM, that is, with a 30-fold difference in affinity. The corresponding dissociation constants for the complexes formed from 3-C15L8-B and the two carbonic anhydrases were 60 and 390 nM, respectively. This demonstration of selectivity between two very similar proteins is striking in view of the fact that the molecular weight of each one of the conjugate molecules is little more than 5000, the fold is unordered, and the polypeptide sequences were designed de novo and have no prior relationship to carbonic anhydrases. The results suggest that synthetic polypeptide conjugates can be prepared from organic molecules that are considered to be weak binders with low selectivity, yielding conjugates with properties that make them attractive alternatives to biologically generated binders in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Lotta T Tegler
- Department of Biochemistry and Organic Chemistry, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
6
|
Synthesis of C-11 linked active ester derivatives of vitamin D3 and their conjugations to 42-residue helix–loop–helix peptides. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.04.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Environmentally sensitive fluorescent sensors based on synthetic peptides. SENSORS 2010; 10:3126-44. [PMID: 22319290 PMCID: PMC3274215 DOI: 10.3390/s100403126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/27/2010] [Accepted: 03/24/2010] [Indexed: 01/02/2023]
Abstract
Biosensors allow the direct detection of molecular analytes, by associating a biological receptor with a transducer able to convert the analyte-receptor recognition event into a measurable signal. We review recent work aimed at developing synthetic fluorescent molecular sensors for a variety of analytes, based on peptidic receptors labeled with environmentally sensitive fluorophores. Fluorescent indicators based on synthetic peptides are highly interesting alternatives to protein-based sensors, since they can be synthesized chemically, are stable, and can be easily modified in a site-specific manner for fluorophore coupling and for immobilization on solid supports.
Collapse
|
8
|
Aili D, Selegård R, Baltzer L, Enander K, Liedberg B. Colorimetric protein sensing by controlled assembly of gold nanoparticles functionalized with synthetic receptors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:2445-2452. [PMID: 19588465 DOI: 10.1002/smll.200900530] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A novel strategy is described for the colorimetric sensing of proteins, based on polypeptide-functionalized gold nanoparticles. Recognition is accomplished using a polypeptide sensor scaffold designed to specifically bind to the model analyte, human carbonic anhydrase II (HCAII). The extent of particle aggregation, induced by the Zn(2+)-triggered dimerization and folding of a second polypeptide also present on the surface of the gold nanoparticle, gives a readily detectable colorimetric shift that is dependent on the concentration of the target protein. In the absence of HCAII, particle aggregation results in a major redshift of the plasmon peak, whereas analyte binding prevented the formation of dense aggregates, significantly reducing the magnitude of the redshift. The versatility of the technique is demonstrated using a second model system based on the recognition of a peptide sequence from the tobacco mosaic virus coat protein (TMVP) by a recombinant antibody fragment (Fab57P). Concentrations down to approximately 10 nM and approximately 25 nM are detected for HCAII and Fab57P, respectively. This strategy is proposed as a generic platform for robust and specific protein analysis that can be further developed to monitor a wide range of target proteins.
Collapse
Affiliation(s)
- Daniel Aili
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | | | | | | | | |
Collapse
|
9
|
Ghosh S, Verma S. Templated Growth of Hybrid Structures at the Peptide–Peptide Interface. Chemistry 2008; 14:1415-9. [DOI: 10.1002/chem.200701736] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Larsson A, Liedberg B. Poly(ethylene glycol) gradient for biochip development. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:11319-25. [PMID: 17900155 DOI: 10.1021/la700729q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A novel method of producing a poly(ethylene glycol) (PEG)-based gradient matrix that varies gradually in thickness from 0 to 500 A over a distance of 5-20 mm is presented. The gradient matrix is graft copolymerized from a mixture of PEG methacrylates onto organic thin films providing free radical polymerization sites initiated by UV irradiation at 254 nm. The films used as grafting platforms consist of either a spin-coated cycloolefin polymer or a self-assembled monolayer on planar gold. The thickness/irradiation gradient is realized by means of a moving shutter that slowly uncovers the modified gold substrate. The structural and functional characteristics of the gradient matrix are investigated with respect to thickness profile, degree of carboxylation, and subsequent immobilization of two model proteins of different sizes and shapes. These characteristics are studied with ellipsometry and infrared reflection-absorption microscopy using a grazing angle objective. It is revealed that the relatively small carboxylation agent used offers homogeneous activation throughout the gradient, even in the thick areas, whereas the diffusion/interpenetration and subsequent immobilization of large proteins is partially hindered. This is crucial information in biosensor design that can be easily obtained from a gradient experiment on a single sample. Moreover, the partially hindered protein interpenetration, the marginal swelling upon hydration, and the unspecific nature of the graft polymerization suggest a matrix growth mechanism that favors the formation of a bushlike polymer structure with a certain degree of cross linking.
Collapse
Affiliation(s)
- Andréas Larsson
- Division of Sensor Science and Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | | |
Collapse
|
11
|
Nakayama K, Endo M, Fujitsuka M, Majima T. Detection of the Local Structural Changes in the Dimer Interface of BamHI Initiated by DNA Binding and Dissociation Using a Solvatochromic Fluorophore. J Phys Chem B 2006; 110:21311-8. [PMID: 17048960 DOI: 10.1021/jp064031d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To detect the local structural change in an interface between proteins induced by the substrate binding and dissociation, a solvatochromic fluorescent N(beta)-L-alanyl-5-(N,N-dimethylamino)-naphthalene-1-sulfonamide (DanAla) was introduced into 132 position of the dimer interface in BamHI. Before addition of the substrate, the fluorescence from the normal planer excited state of DanAla moiety was observed as a main emission, and thereby the DanAla in the dimer interface is located in the hydrophobic microenvironment. The incubation with the substrate for 20 min induced the gradual increase in fluorescence intensity around 430 nm. The fact reflects that the polarity is reduced by the slight structural change initiated by the formation of the complex with the substrate. Furthermore, the incubation for more than 20 min caused the slight decrease in fluorescence around 430 nm and an appearance of fluorescence (560 nm) due to twisted intramolecular charge transfer (TICT) excited state. Therefore, the DanAla is exposed to comparative polar environment after the dissociation of the substrate. The fluorescence lifetime as a minor component, which is attributed to the TICT excited state, was reduced by addition of the substrate. The results provide that the hydrophobicity in the dimer interface is increased by the substrate binding. Interestingly, we found that the structure of an initial form is different from that of a refolded form after the dissociation of the substrate using a spectral subtraction technique. We have achieved detection of the changing structure induced by the substrate binding and dissociation using a steady-state and time-resolved fluorescence.
Collapse
Affiliation(s)
- Koji Nakayama
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | | | | | | |
Collapse
|
12
|
Ho HA, Béra-Abérem M, Leclerc M. Optical sensors based on hybrid DNA/conjugated polymer complexes. Chemistry 2006; 11:1718-24. [PMID: 15565742 DOI: 10.1002/chem.200400537] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Single-stranded DNA (ss-DNA) can specifically bind to various targets, including a complementary ss-DNA, ions, proteins, drugs, and so forth. When binding takes place, the oligonucleotide probe often undergoes a conformational transition. This conformational change of the negatively charged ss-DNA can be detected by using a water-soluble, cationic polythiophene derivative, which transduces the complex formation into an optical (colorimetric or fluorometric) signal without any labeling of the probe or the target. This simple and rapid methodology has enabled the specific and sensitive detection of nucleic acids and human thrombin. This new biophotonic tool can easily be applied to the detection of various other biomolecules and is also useful in the high-throughput screening of new drugs.
Collapse
Affiliation(s)
- Hoang-Anh Ho
- Département de Chimie, Université Laval, Quebec City, Quebec G1K 7P4, Canada
| | | | | |
Collapse
|
13
|
Duo J, Fletcher H, Stenken JA. Natural and synthetic affinity agents as microdialysis sampling mass transport enhancers: current progress and future perspectives. Biosens Bioelectron 2006; 22:449-57. [PMID: 16797961 DOI: 10.1016/j.bios.2006.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 02/15/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
Microdialysis sampling is a diffusion-based separation method that allows analytes to freely diffuse across a hollow fiber semi-permeable dialysis membrane. This sampling technique has been widely used for in vivo chemical collection. The inclusion of affinity-based trapping agents into the microdialysis perfusion fluid serves to improve the relative recovery via the binding reaction of low molecular weight hydrophobic analytes and larger analytes such as peptides and proteins. Here, we briefly review our past studies using different compounds (native cyclodextrins and antibodies) to improve microdialysis sampling recovery. A brief compilation of our studies using antibody-immobilized beads as a means to improve cytokine collection during microdialysis sampling is also described. We present new work focused on the use of antibody-immobilized bead microdialysis sampling enhancement for various endocrine hormones (amylin, GLP-1, glucagon, insulin, and leptin). The antibody-bead enhancement approach allowed for recovery enhancements that ranged between 3 and 20-fold for these peptides. Using the enhanced recovery approach, endocrine peptides at pM concentrations can be quantified. Finally, our initial work focused on developing non-antibody based enhancement agents using bovine serum albumin-heparin conjugates covalently bound to polystyrene microspheres is presented for the cytokine, tumor necrosis factor-alpha (TNF-alpha). Unlike antibodies, heparin provides the advantage of being reusable as an enhancement agent and served to improve the relative recovery of TNF-alpha by three-fold.
Collapse
Affiliation(s)
- Jia Duo
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | |
Collapse
|
14
|
Abstract
The ultimate goals of de novo protein design are the construction of novel tertiary structures and functions. Here is presented the design and synthesis of a uniquely branched three-helix bundle that folds into a well-folded dimeric protein. The branching of this protein was performed by the method of native chemical ligation, which provides a chemoselective and stable amide bond between the unprotected fragments. This ligation strategy was possible by the presented facile preparation of a peptide (43 amino acids) with a specific side chain thioester, which is synthesized by general Fmoc solid phase peptide synthesis. From the presented structural analysis, it is seen that the folded protein is present as a stable and highly helical dimer, thus forming a six-helix bundle. This unique tertiary structure, composed of a dimer of three individual alpha-helices branched together, offers different possibilities for protein engineering, such as metal and cofactor binding sites, as well as for the construction of novel functions.
Collapse
Affiliation(s)
- Gunnar T Dolphin
- Department of Chemistry-IFM, Linköping University, 58183 Linköping, Sweden.
| |
Collapse
|
15
|
Dolphin GT. A designed well-folded monomeric four-helix bundle protein prepared by Fmoc solid-phase peptide synthesis and native chemical ligation. Chemistry 2006; 12:1436-47. [PMID: 16283689 DOI: 10.1002/chem.200500458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The design and total chemical synthesis of a monomeric native-like four-helix bundle protein is presented. The designed protein, GTD-Lig, consists of 90 amino acids and is based on the dimeric structure of the de novo designed helix-loop-helix GTD-43. GTD-Lig was prepared by the native chemical ligation strategy and the fragments (45 residues long) were synthesized by applying standard fluorenylmethoxycarbonyl (Fmoc) chemistry. The required peptide-thioester fragment was prepared by anchoring the free gamma-carboxy group of Fmoc-Glu-allyl to the solid phase. After chain elongation the allyl moiety was orthogonally removed and the resulting carboxy group was functionalized with a glycine-thioester followed by standard trifluoroacetic acid (TFA) cleavage to produce the unprotected peptide-thioester. The structure of the synthetic protein was examined by far- and near-UV circular dichroism (CD), sedimentation equilibrium ultracentrifugation, and NMR and fluorescence spectroscopy. The spectroscopic methods show a highly helical and native-like monomeric protein consistent with the design. Heat-induced unfolding was studied by tryptophan absorbance and far-UV CD. The thermal unfolding of GTD-Lig occurs in two steps; a cooperative transition from the native state to an intermediate state and thereafter by noncooperative melting to the unfolded state. The intermediate exhibits the properties of a molten globule such as a retained native secondary structure and a compact hydrophobic core. The thermodynamics of GuHCl-induced unfolding were evaluated by far-UV CD monitoring and the unfolding exhibited a cooperative transition that is well-fitted by a two-state mechanism from the native to the unfolded state. GTD-Lig clearly shows the characteristics of a native protein with a well-defined structure and typical unfolding transitions. The design and synthesis presented herein is of general applicability for the construction of large monomeric proteins.
Collapse
Affiliation(s)
- Gunnar T Dolphin
- LEDSS 5, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France.
| |
Collapse
|
16
|
Takaoka Y, Tsutsumi H, Kasagi N, Nakata E, Hamachi I. One-Pot and Sequential Organic Chemistry on an Enzyme Surface to Tether a Fluorescent Probe at the Proximity of the Active Site with Restoring Enzyme Activity. J Am Chem Soc 2006; 128:3273-80. [PMID: 16522109 DOI: 10.1021/ja057926x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new and simple method to tether a functional molecule at the proximity of the active site of an enzyme has been successfully developed without any activity loss. The one-pot sequential reaction was conducted on a surface of human carbonic anhydrase II (hCAII) based on the affinity labeling and the subsequent hydrazone/oxime exchange reaction. The reaction proceeds in a greater than 90% yield in the overall steps under mild conditions. The enzymatic activity assay demonstrated that the release of the affinity ligand from the active site of hCAII concurrently occurred with the replacement by the aminooxy derivatives, so that it restored the enzymatic activity from the completely suppressed state of the labeled hCAII. Such restoring of the activity upon the sequential modification is quite unique compared to conventional affinity labeling methods. The peptide mapping experiment revealed that the labeling reaction was selectively directed to His-3 or His-4, located on a protein surface proximal to the active site. When the fluorescent probe was tethered using the present sequential chemistry, the engineered hCAII can act as a fluorescent biosensor toward the hCAII inhibitors. This clearly indicates the two advantages of this method, that is (i) the modification is directed to the proximity of the active site and (ii) the sequential reaction re-opens the active site cavity of the target enzyme.
Collapse
Affiliation(s)
- Yousuke Takaoka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
17
|
Altschuh D, Oncul S, Demchenko AP. Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors. J Mol Recognit 2006; 19:459-77. [PMID: 17089349 DOI: 10.1002/jmr.807] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molecular biosensors are devices of molecular size that are designed for sensing different analytes on the basis of biospecific recognition. They should provide two coupled functions - the recognition (specific binding) of the target and the transduction of information about the recognition event into a measurable signal. The present review highlights the achievements and prospects in design and operation of molecular biosensors for which the transduction mechanism is based on fluorescence. We focus on the general strategy of fluorescent molecular sensing, construction of sensor elements, based on natural and designed biopolymers (proteins and nucleic acids). Particular attention is given to the coupling of sensing elements with fluorescent reporter dyes and to the methods for producing efficient fluorescence responses.
Collapse
Affiliation(s)
- Danièle Altschuh
- UMR 7175 CNRS/ULP, ESBS, Parc d'Innovation, Bld S. Brant, BP 10413, 67412 Illkirch Cedex, France.
| | | | | |
Collapse
|
18
|
Andersson T, Lundquist M, Dolphin GT, Enander K, Jonsson BH, Nilsson JW, Baltzer L. The Binding of Human Carbonic Anhydrase II by Functionalized Folded Polypeptide Receptors. ACTA ACUST UNITED AC 2005; 12:1245-52. [PMID: 16298304 DOI: 10.1016/j.chembiol.2005.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 08/01/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Several receptors for human carbonic anhydrase II (HCAII) have been prepared by covalently attaching benzenesulfonamide carboxylates via aliphatic aminocarboxylic acid spacers of variable length to the side chain of a lysine residue in a designed 42 residue helix-loop-helix motif. The sulfonamide group binds to the active site zinc ion of human carbonic anhydrase II located in a 15 A deep cleft. The dissociation constants of the receptor-HCAII complexes were found to be in the range from low micromolar to better than 20 nM, with the lowest affinities found for spacers with less than five methylene groups and the highest affinity found for the spacer with seven methylene groups. The results suggest that the binding is a cooperative event in which both the sulfonamide residue and the helix-loop-helix motif contribute to the overall affinity.
Collapse
Affiliation(s)
- Theresa Andersson
- Department of Chemistry-IFM, Linköping University, 581 83 Linköping, Sweden
| | | | | | | | | | | | | |
Collapse
|
19
|
Cooper WJ, Waters ML. Molecular recognition with designed peptides and proteins. Curr Opin Chem Biol 2005; 9:627-31. [PMID: 16257571 DOI: 10.1016/j.cbpa.2005.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 10/12/2005] [Indexed: 12/01/2022]
Abstract
The design of proteins and peptides as molecular receptors is a rapidly growing area of research. Two primary approaches have been utilized, involving the minimization of known protein binding motifs or the de novo design of binding pockets within well-folded protein structures. These approaches are complementary and help define the minimum requirements necessary for biomolecular recognition. Recent advances in this area include the design of cavities within helix bundles for the binding of anesthetics, the design of beta-hairpins for the recognition of nucleotides and oligonucleotides, the redesign of protein binding sites for unique ligands, and the design of mini-proteins via protein grafting for the recognition of proteins and DNA. These advances provide exciting new opportunities to develop novel biosensors, de novo designed catalysts, exogenously triggered synthetic signal transduction cascades, and novel approaches to therapeutic treatments.
Collapse
Affiliation(s)
- W John Cooper
- Department of Chemistry, CB 3290, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
20
|
Engfeldt T, Renberg B, Brumer H, Nygren PA, Karlström AE. Chemical Synthesis of Triple-Labelled Three-Helix Bundle Binding Proteins for Specific Fluorescent Detection of Unlabelled Protein. Chembiochem 2005; 6:1043-50. [PMID: 15880677 DOI: 10.1002/cbic.200400388] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Site-specifically triple-labelled three-helix bundle affinity proteins (affibody molecules) have been produced by total chemical synthesis. The 58 aa affinity proteins were assembled on an automated peptide synthesizer, followed by manual on-resin incorporation of three different reporter groups. An orthogonal protection strategy was developed for the site-specific introduction of 5-(2-aminethylamino)-1-naphthalenesulfonic acid (EDANS) and 6-(7-nitrobenzofurazan-4-ylamino)-hexanoic acid (NBDX), constituting a donor/acceptor pair for fluorescence resonance energy transfer (FRET), and a biotin moiety, used for surface immobilization. Circular dichroism and biosensor studies of the synthetic proteins and their recombinant counterparts revealed that the synthetic proteins were folded and retained their binding specificities. The biotin-conjugated protein could be immobilized onto a streptavidin surface without loss of activity. The synthetic, doubly fluorescent-labelled affinity proteins were shown to function as fluorescent biosensors in an assay for the specific detection of unlabelled human IgG and IgA.
Collapse
Affiliation(s)
- Torun Engfeldt
- Department of Biotechnology, Royal Institute of Technology, AlbaNova University Center, 10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
21
|
Nicoll AJ, Weston CJ, Cureton C, Ludwig C, Dancea F, Spencer N, Smart OS, Günther UL, Allemann RK. De novo design of a stable N-terminal helical foldamer. Org Biomol Chem 2005; 3:4310-5. [PMID: 16327890 DOI: 10.1039/b513891d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A peptide NTH-18 was synthesized in which a N-terminal helix is stabilised by two crossed disulfide bonds to a C-terminal extension. The design was inspired by the structure of the neurotoxic peptide apamin, which has previously been used to stabilise helices in miniature enzymes. CD- and NMR-spectroscopy indicated that NTH-18 adopted a fold similar to that found in apamin. However, the arrangement of the elements of secondary structures was inverted relative to apamin; a N-terminal alpha-helix was connected by a reverse turn to a C-terminal extension of non-canonical secondary structure. NTH-18 displayed significant stability to heat and changes of pH. The high definition of the N-terminal end of the alpha-helix of NTH-18 should make this peptide a useful vehicle to stabilise alpha-helices in proteins with applications in protein engineering and molecular recognition.
Collapse
Affiliation(s)
- Andrew J Nicoll
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|