1
|
Su YH, Jia JG, Huang XD, Feng JS, Bao SS, Ren M, Kurmoo M, Zheng LM. Changes in magnetic order through two consecutive dehydration steps of metal-phosphonate diamond chains. RSC Adv 2019; 9:31911-31917. [PMID: 35530765 PMCID: PMC9072711 DOI: 10.1039/c9ra05722f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/29/2019] [Indexed: 01/14/2023] Open
Abstract
Hydrothermal reactions of the multitopic ligand 1-hydroxy-1-(piperidin-4-yl)methylidenebisphosphonic acid (hpdpH4) with cobalt or nickel sulfates afforded two new isostructural metal phosphonates, M3 II(hpdpH)2(H2O)6·4H2O [M = Co (Co-10H2O), Ni (Ni-10H2O)]. Their structures consist of parallel diamond chains of three MO6 octahedra bridged by the PO3C tetrahedra. Six of the seven oxygen atoms of the ligand are involved in coordination; for two ligands that amounts to 12 bonds for 3 MO6 and the remaining six are occupied by terminal water molecules. In addition, four water molecules sit in between the chains providing H-bonds to the formation of a 3D-net. Thermal analyses show identical two-step dehydration processes involving first the departure of six water molecules followed by the remaining four. A detailed study of the ac- and dc-magnetization as a function of temperature, field and frequency reveals associated drastic changes. The virgin form Co-10H2O is a paramagnet while its partial dehydrated form Co-4H2O is an antiferromagnet displaying canting below T N = 4.7 K and the fully dehydrated form Co is a ferrimagnet (T C = 12 K). Ni-10H2O and Ni-4H2O exhibit long-range ordered antiferromagnetism (T N = 2.7 and 4.0 K, respectively) and also become ferrimagnets (T C = 9.4 K) when fully dehydrated to Ni. The dehydrated samples can be fully rehydrated with the complete recovery of both the structures and magnetic properties.
Collapse
Affiliation(s)
- Yan-Hui Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Jian-Shen Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Min Ren
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Mohamedally Kurmoo
- Université de Strasbourg, Institut de Chimie de Strasbourg, CNRS-UMR7177 4 rue Blaise Pascal Strasbourg Cedex 67070 France
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
2
|
Romanenko VD. α-Heteroatom-substituted gem-Bisphosphonates: Advances in the Synthesis and Prospects for Biomedical Application. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190401141844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functionalized gem-bisphosphonic acid derivatives being pyrophosphate isosteres are of great synthetic and biological interest since they are currently the most important class of drugs developed for the treatment of diseases associated with the disorder of calcium metabolism, including osteoporosis, Paget’s disease, and hypercalcemia. In this article, we will try to give an in-depth overview of the methods for obtaining α- heteroatom-substituted methylenebisphosphonates and acquaint the reader with the synthetic strategies that are used to develop biologically important compounds of this type.
Collapse
Affiliation(s)
- Vadim D. Romanenko
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 1-Murmanska Street, Kyiv-94, 02660, Ukraine
| |
Collapse
|
3
|
Gałęzowska J, Chmielewska E. Thermodynamics of the Interactions of Aminobisphosphonates and Their Calcium Complexes with Bovine Serum Albumin. Chem Biodivers 2018; 15:e1800272. [PMID: 29989308 DOI: 10.1002/cbdv.201800272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/06/2018] [Indexed: 11/08/2022]
Abstract
Binding of bisphosphonates (BPs) to plasma proteins was investigated in the 1990s as a pharmacokinetic issue in order to fully understand bio-distribution of BP drugs which are successfully used for the treatment of several bone-related diseases. It has been hypothesized that binding to these proteins occurs with low to moderate affinity despite of unfavorable hydrophilicity of BPs, and Ca2+ was identified as a strong catalyst of this binding. However, these studies mainly consisted in the separation and quantification of bound and unbound drug or protein fractions using chromatographic techniques without an outcome on the molecular level. Presented thermodynamic studies analyze the interactions of three N-BPs as well as their Ca2+ complexes with bovine serum albumine (BSA) by means of isothermal calorimetry. The studies reveal spontaneous enthalpy favored interactions of N-BPs (amino-containing BPs) with BSA, which are enhanced by the presence of Ca2+ ions up to ~15-fold, strongly depending on N-BP. Those are low affinity binding events, comparable to Ca2+ -N-BP interactions, which most likely occur at Ca2+ binding site(s). It is a first example of estimation of thermodynamic forces of interactions of free and calcium-bound N-BPs with albumin.
Collapse
Affiliation(s)
- Joanna Gałęzowska
- Department of Inorganic Chemistry, Wrocław Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Ewa Chmielewska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
4
|
Gałęzowska J, Czapor-Irzabek H, Chmielewska E, Kafarski P, Janek T. Aminobisphosphonates based on cyclohexane backbone as coordinating agents for metal ions. Thermodynamic, spectroscopic and biological studies. NEW J CHEM 2018. [DOI: 10.1039/c8nj01158c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Complex formation equilibria of calcium, magnesium, copper and nickel with amino-bisphosphonic ligands are described, together with a speciation study along with calorimetric outcome and cytotoxicity characteristics.
Collapse
Affiliation(s)
- J. Gałęzowska
- Department of Inorganic Chemistry
- Wrocław Medical University
- Wrocław 50-556
- Poland
| | - H. Czapor-Irzabek
- Laboratory of Elemental Analysts and Structural Research
- Wrocław Medical University
- Wrocław 50-556
- Poland
| | - E. Chmielewska
- Department of Bioorganic Chemistry
- Faculty of Chemistry
- Wrocław University of Science and Technology
- Wrocław
- Poland
| | - P. Kafarski
- Department of Bioorganic Chemistry
- Faculty of Chemistry
- Wrocław University of Science and Technology
- Wrocław
- Poland
| | - T. Janek
- Department of Inorganic Chemistry
- Wrocław Medical University
- Wrocław 50-556
- Poland
| |
Collapse
|
5
|
Interactions of N-heteroalkylaminomethylenebisphosphonic acids with Cd(II) ions: Electrochemical and spectroscopic investigations. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Belhocine T, Forsyth SA, Gunaratne HQN, Nieuwenhuyzen M, Nockemann P, Puga AV, Seddon KR, Srinivasan G, Whiston K. 3-Methylpiperidinium ionic liquids. Phys Chem Chem Phys 2015; 17:10398-416. [DOI: 10.1039/c4cp05936k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids based on the 3-methylpiperidinium cation core exhibit little or no tendency to crystallise upon cooling and high electrochemical stabilities.
Collapse
Affiliation(s)
- Tayeb Belhocine
- The QUILL Research Centre
- School of Chemistry and Chemical Engineering
- The Queen's University of Belfast
- Belfast BT9 5AG
- UK
| | | | - H. Q. Nimal Gunaratne
- The QUILL Research Centre
- School of Chemistry and Chemical Engineering
- The Queen's University of Belfast
- Belfast BT9 5AG
- UK
| | - Mark Nieuwenhuyzen
- The QUILL Research Centre
- School of Chemistry and Chemical Engineering
- The Queen's University of Belfast
- Belfast BT9 5AG
- UK
| | - Peter Nockemann
- The QUILL Research Centre
- School of Chemistry and Chemical Engineering
- The Queen's University of Belfast
- Belfast BT9 5AG
- UK
| | - Alberto V. Puga
- The QUILL Research Centre
- School of Chemistry and Chemical Engineering
- The Queen's University of Belfast
- Belfast BT9 5AG
- UK
| | - Kenneth R. Seddon
- The QUILL Research Centre
- School of Chemistry and Chemical Engineering
- The Queen's University of Belfast
- Belfast BT9 5AG
- UK
| | - Geetha Srinivasan
- The QUILL Research Centre
- School of Chemistry and Chemical Engineering
- The Queen's University of Belfast
- Belfast BT9 5AG
- UK
| | | |
Collapse
|
7
|
NMR, potentiometric and ESI-MS combined studies on the zinc(II) magnesium(II) and calcium(II) complexation by (morpholin-1-yl)methane-1,1-diphosphonic acid and its thio-analog. Polyhedron 2012. [DOI: 10.1016/j.poly.2011.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Metal diphosphonates with double-layer and pillared layered structures based on N-cyclohexylaminomethanediphosphonate. J SOLID STATE CHEM 2010. [DOI: 10.1016/j.jssc.2010.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Matczak-Jon E, Kowalik-Jankowska T, Ślepokura K, Kafarski P, Rajewska A. Specificity of the zinc(ii), magnesium(ii) and calcium(ii) complexation by (pyridin-2-yl)aminomethane-1,1-diphosphonic acids and related 1,3-(thiazol-2-yl) and 1,3-(benzothiazol-2-yl) derivatives. Dalton Trans 2010; 39:1207-21. [DOI: 10.1039/b914647d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Dąbrowska E, Burzyńska A, Mucha A, Matczak-Jon E, Sawka-Dobrowolska W, Berlicki Ł, Kafarski P. Insight into the mechanism of three component condensation leading to aminomethylenebisphosphonates. J Organomet Chem 2009. [DOI: 10.1016/j.jorganchem.2009.07.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Demadis KD, Barouda E, Zhao H, Raptis RG. Structural architectures of charge-assisted, hydrogen-bonded, 2D layered amine⋯tetraphosphonate and zinc⋯tetraphosphonate ionic materials. Polyhedron 2009. [DOI: 10.1016/j.poly.2009.05.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Młynarz P, Jewginski M, Śliwińska S, Latajka R, Schroeder G, Kafarski P. “Twin” phosphorous atoms of tetraethyl 2-methyl-piperyd-1-ylmethylenebisphosphonates. HETEROATOM CHEMISTRY 2007. [DOI: 10.1002/hc.20349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Solid state and solution behaviour of N-(2-pyridyl)- and N-(4-methyl-2-pyridyl)aminomethane-1,1-diphosphonic acids. J Mol Struct 2006. [DOI: 10.1016/j.molstruc.2005.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Matczak-Jon E, Videnova-Adrabińska V. Supramolecular chemistry and complexation abilities of diphosphonic acids. Coord Chem Rev 2005. [DOI: 10.1016/j.ccr.2005.06.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|