1
|
Hatano A, Sugawa T, Mimura R, Kataoka S, Yamamoto K, Omoda T, Zhu B, Tian Y, Sakaki S, Murahashi T. Isolation and Structures of Polyarene Palladium Nanoclusters. J Am Chem Soc 2023. [PMID: 37276484 PMCID: PMC10360153 DOI: 10.1021/jacs.3c02849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report that surrounding coordination of neutral six-membered arene rings affords molecularly well-defined organotransition metal nanoclusters. With the use of [2.2]paracyclophane as the face-capping arene ligand, we have isolated two polyarene palladium nanoclusters, one consisting of a hexakis-arene ligand shell and a hexagonal close-packed Pd13 anticuboctahedron trichloride core, and the other consisting of an octakis-arene ligand shell and a non-close-packed Pd17 square gyrobicupola dichloride core, both with Pd-Pd direct bonding. The μ4-facial coordination mode of arene was discovered through the structural characterization of the Pd13 cluster. Their Pd13 and Pd17 cores, which are distinct from the previously identified face-centered-cubic Pd13 core surrounded by seven-membered cycloheptatrienyl, are explained by stereochemical and theoretical analyses.
Collapse
Affiliation(s)
- Ayaka Hatano
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Sugawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Rei Mimura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shunichi Kataoka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Koji Yamamoto
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsubasa Omoda
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Bo Zhu
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8302, Japan
| | - Yu Tian
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8302, Japan
| | - Shigeyoshi Sakaki
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8302, Japan
| | - Tetsuro Murahashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
2
|
Klare HFT, Oestreich M. The Power of the Proton: From Superacidic Media to Superelectrophile Catalysis. J Am Chem Soc 2021; 143:15490-15507. [PMID: 34520196 DOI: 10.1021/jacs.1c07614] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Superacidic media became famous in connection with carbocations. Yet not all reactive intermediates can be generated, characterized, and eventually isolated from these Brønsted acid/Lewis acid cocktails. The counteranion, that is the conjugate base, in these systems is often too nucleophilic and/or engages in redox chemistry with the newly formed cation. The Brønsted acidity, especially superacidity, is in fact often not even crucial unless protonation of extremely weak bases needs to be achieved. Instead, it is the chemical robustness of the aforementioned counteranion that determines the success of the protolysis. The advent of molecular Brønsted superacids derived from weakly coordinating, redox-inactive counteranions that do withstand the enormous reactivity of superelectrophiles such as silicon cations completely changed the whole field. This Perspective summarizes general aspects of medium and molecular Brønsted acidity and shows how applications of molecular Brønsted superacids have advanced from stoichiometric reactions to catalytic processes involving protons and in situ generated superelectrophiles.
Collapse
Affiliation(s)
- Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
3
|
Klare HFT, Albers L, Süsse L, Keess S, Müller T, Oestreich M. Silylium Ions: From Elusive Reactive Intermediates to Potent Catalysts. Chem Rev 2021; 121:5889-5985. [PMID: 33861564 DOI: 10.1021/acs.chemrev.0c00855] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The history of silyl cations has all the makings of a drama but with a happy ending. Being considered reactive intermediates impossible to isolate in the condensed phase for decades, their actual characterization in solution and later in solid state did only fuel the discussion about their existence and initially created a lot of controversy. This perception has completely changed today, and silyl cations and their donor-stabilized congeners are now widely accepted compounds with promising use in synthetic chemistry. This review provides a comprehensive summary of the fundamental facts and principles of the chemistry of silyl cations, including reliable ways of their preparation as well as their physical and chemical properties. The striking features of silyl cations are their enormous electrophilicity and as such reactivity as super Lewis acids as well as fluorophilicity. Known applications rely on silyl cations as reactants, stoichiometric reagents, and promoters where the reaction success is based on their steady regeneration over the course of the reaction. Silyl cations can even be discrete catalysts, thereby opening the next chapter of their way into the toolbox of synthetic methodology.
Collapse
Affiliation(s)
- Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| | - Lena Albers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany
| | - Lars Süsse
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| | - Sebastian Keess
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| | - Thomas Müller
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| |
Collapse
|
4
|
|
5
|
Fischer M, Barbul D, Schmidtmann M, Beckhaus R. Unexpected Selective Methyl Group Abstractions from SiMe
3
Moieties of CH
2
SiMe
3
Ligands To Give New Cationic Titanium Complexes. Chemistry 2019; 25:7119-7130. [DOI: 10.1002/chem.201900599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Malte Fischer
- Institut für ChemieFakultät für Mathematik und NaturwissenschaftenCarl von Ossietzky Universität Oldenburg Postfach 2503 26111 Oldenburg Germany
| | - Daniel Barbul
- Institut für ChemieFakultät für Mathematik und NaturwissenschaftenCarl von Ossietzky Universität Oldenburg Postfach 2503 26111 Oldenburg Germany
| | - Marc Schmidtmann
- Institut für ChemieFakultät für Mathematik und NaturwissenschaftenCarl von Ossietzky Universität Oldenburg Postfach 2503 26111 Oldenburg Germany
| | - Ruediger Beckhaus
- Institut für ChemieFakultät für Mathematik und NaturwissenschaftenCarl von Ossietzky Universität Oldenburg Postfach 2503 26111 Oldenburg Germany
| |
Collapse
|
6
|
|
7
|
Kramer N, Wadepohl H, Greb L. Tris(dimethylamino)silylium ion: structure and reactivity of a dimeric silaguanidinium. Chem Commun (Camb) 2019; 55:7764-7767. [DOI: 10.1039/c9cc03625c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The formal dimer of an elusive silaguanidinium ion is described. It undergoes spontaneous electrophilic aromatic silylation of electron rich π-systems.
Collapse
Affiliation(s)
- Nina Kramer
- Anorganisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| |
Collapse
|
8
|
Musgrave RA, Hailes RLN, Schäfer A, Russell AD, Gates PJ, Manners I. New reactivity at the silicon bridge in sila[1]ferrocenophanes. Dalton Trans 2018; 47:2759-2768. [PMID: 29417116 DOI: 10.1039/c7dt04593j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe two new types of reactivity involving silicon-bridged [1]ferrocenophanes. In an attempt to form a [1]ferrocenophane with a bridging silyl cation, the reaction of sila[1]ferrocenophane [Fe(η-C5H4)2Si(H)TMP] (12) (TMP = 2,2,6,6-tetramethylpiperidyl) towards the hydride-abstraction reagent trityl tetrakis(pentafluorophenyl)borate ([CPh3][B(C6F5)4]) was explored. This yielded the unusual dinuclear species [Fe(η-C5H4)2Si(TMP·H)(η-C5H3)Fe(η-C5H4)Si(H)TMP][B(C6F5)4] [13][B(C6F5)4] in low yield. The formation of [13]+ is proposed to involve abstraction of hydride from the silicon bridge in 12 with subsequent C-H bond cleavage of a cyclopentadienyl group by the resulting electrophilic transient silyl cation intermediate. We also explored the reaction of dimethylsila[1]ferrocenophane [Fe(η-C5H4)2SiMe2] (1) with the Au(i) species AuCl(PMe3). This was found to result in addition of the Au-Cl bond across the Cpipso-Si bond to yield the ring-opened species [1'-(chlorodimethylsilyl)-ferrocenyl](trimethylphosphine)gold(i), [Fe(C5H4SiMe2Cl){C5H4Au(PMe3)}] (14). This represents the first example of ring-opening addition of a metallocenophane with a reagent possessing a transition metal-halogen bond.
Collapse
Affiliation(s)
- Rebecca A Musgrave
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Schmidt RK, Klare HFT, Fröhlich R, Oestreich M. Planar Chiral, Ferrocene-Stabilized Silicon Cations. Chemistry 2016; 22:5376-83. [DOI: 10.1002/chem.201504777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Ruth K. Schmidt
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 115 10623 Berlin Germany), Fax
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| | - Hendrik F. T. Klare
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 115 10623 Berlin Germany), Fax
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| | - Roland Fröhlich
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| | - Martin Oestreich
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 115 10623 Berlin Germany), Fax
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
11
|
Engesser TA, Lichtenthaler MR, Schleep M, Krossing I. Reactive p-block cations stabilized by weakly coordinating anions. Chem Soc Rev 2016; 45:789-899. [PMID: 26612538 PMCID: PMC4758321 DOI: 10.1039/c5cs00672d] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 12/12/2022]
Abstract
The chemistry of the p-block elements is a huge playground for fundamental and applied work. With their bonding from electron deficient to hypercoordinate and formally hypervalent, the p-block elements represent an area to find terra incognita. Often, the formation of cations that contain p-block elements as central ingredient is desired, for example to make a compound more Lewis acidic for an application or simply to prove an idea. This review has collected the reactive p-block cations (rPBC) with a comprehensive focus on those that have been published since the year 2000, but including the milestones and key citations of earlier work. We include an overview on the weakly coordinating anions (WCAs) used to stabilize the rPBC and give an overview to WCA selection, ionization strategies for rPBC-formation and finally list the rPBC ordered in their respective group from 13 to 18. However, typical, often more organic ion classes that constitute for example ionic liquids (imidazolium, ammonium, etc.) were omitted, as were those that do not fulfill the - naturally subjective -"reactive"-criterion of the rPBC. As a rule, we only included rPBC with crystal structure and only rarely refer to important cations published without crystal structure. This collection is intended for those who are simply interested what has been done or what is possible, as well as those who seek advice on preparative issues, up to people having a certain application in mind, where the knowledge on the existence of a rPBC that might play a role as an intermediate or active center may be useful.
Collapse
Affiliation(s)
- Tobias A. Engesser
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF) , Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany .
| | - Martin R. Lichtenthaler
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF) , Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany .
| | - Mario Schleep
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF) , Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany .
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF) , Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany .
| |
Collapse
|
12
|
Wagner M, Zobel B, Dietz C, Schollmeyer D, Jurkschat K. Cyclic Dinuclear Organotin Cations Stabilized by Bulky Substituents. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Wagner
- Lehrstuhl
für Anorganische Chemie II, Fakultät für Chemie
und Chemische Biologie, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Bernhard Zobel
- Lehrstuhl
für Anorganische Chemie II, Fakultät für Chemie
und Chemische Biologie, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Christina Dietz
- Lehrstuhl
für Anorganische Chemie II, Fakultät für Chemie
und Chemische Biologie, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Dieter Schollmeyer
- Institut
für Organische Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Klaus Jurkschat
- Lehrstuhl
für Anorganische Chemie II, Fakultät für Chemie
und Chemische Biologie, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
13
|
Zhu Y, Yu B. Highly Stereoselective β-Mannopyranosylation via the 1-α-Glycosyloxy-isochromenylium-4-gold(I) Intermediates. Chemistry 2015; 21:8771-80. [DOI: 10.1002/chem.201500648] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Indexed: 01/02/2023]
|
14
|
Hadadpour M, Liu Y, Chadha P, Ragogna PJ. Overcoming a Tight Coil To Give a Random “Co” Polymer Derived from a Mixed Sandwich Cobaltocene. Macromolecules 2014. [DOI: 10.1021/ma501323q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mahboubeh Hadadpour
- Department of Chemistry, The University of Western Ontario, Chemistry Building, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - Yuqing Liu
- Department of Chemistry, The University of Western Ontario, Chemistry Building, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - Preeti Chadha
- Department of Chemistry, The University of Western Ontario, Chemistry Building, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - Paul J. Ragogna
- Department of Chemistry, The University of Western Ontario, Chemistry Building, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| |
Collapse
|
15
|
Rohde VHG, Pommerening P, Klare HFT, Oestreich M. Intramolecularly Sulfur-Stabilized Silicon Cations as Lewis Acid Catalysts. Organometallics 2014. [DOI: 10.1021/om500570d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Volker H. G. Rohde
- Institut
für Chemie, Technische Universität Berlin, Strasse des 17.
Juni 115, 10623 Berlin, Germany
| | - Phillip Pommerening
- Institut
für Chemie, Technische Universität Berlin, Strasse des 17.
Juni 115, 10623 Berlin, Germany
| | - Hendrik F. T. Klare
- Institut
für Chemie, Technische Universität Berlin, Strasse des 17.
Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut
für Chemie, Technische Universität Berlin, Strasse des 17.
Juni 115, 10623 Berlin, Germany
| |
Collapse
|
16
|
Nödling AR, Müther K, Rohde VHG, Hilt G, Oestreich M. Ferrocene-Stabilized Silicon Cations as Catalysts for Diels–Alder Reactions: Attempted Experimental Quantification of Lewis Acidity and ReactIR Kinetic Analysis. Organometallics 2013. [DOI: 10.1021/om401040y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Alexander R. Nödling
- Institut
für Chemie, Technische Universität Berlin, Strasse des 17.
Juni 115, 10623 Berlin, Germany
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Kristine Müther
- Institut
für Chemie, Technische Universität Berlin, Strasse des 17.
Juni 115, 10623 Berlin, Germany
| | - Volker H. G. Rohde
- Institut
für Chemie, Technische Universität Berlin, Strasse des 17.
Juni 115, 10623 Berlin, Germany
| | - Gerhard Hilt
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Martin Oestreich
- Institut
für Chemie, Technische Universität Berlin, Strasse des 17.
Juni 115, 10623 Berlin, Germany
| |
Collapse
|
17
|
Müther K, Hrobárik P, Hrobáriková V, Kaupp M, Oestreich M. The Family of Ferrocene‐Stabilized Silylium Ions: Synthesis,29Si NMR Characterization, Lewis Acidity, Substituent Scrambling, and Quantum‐Chemical Analyses. Chemistry 2013; 19:16579-94. [DOI: 10.1002/chem.201302885] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Kristine Müther
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin (Germany)
- Organisch‐Chemisches Institut, Westfälische Wilhelms‐Universität Münster, Corrensstrasse 40, 48149 Münster (Germany)
| | - Peter Hrobárik
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin (Germany)
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84536 Bratislava (Slovakia)
| | - Veronika Hrobáriková
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin (Germany)
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, 84215 Bratislava (Slovakia)
| | - Martin Kaupp
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin (Germany)
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin (Germany)
- Organisch‐Chemisches Institut, Westfälische Wilhelms‐Universität Münster, Corrensstrasse 40, 48149 Münster (Germany)
| |
Collapse
|
18
|
Brown ZD, Power PP. Mechanisms of Reactions of Open-Shell, Heavier Group 14 Derivatives with Small Molecules: n−π* Back-Bonding in Isocyanide Complexes, C–H Activation under Ambient Conditions, CO Coupling, and Ancillary Molecular Interactions†This Award Article summarizes, including more recent results, one of the themes of a lecture presented on March 26th, 2012, at the 243rd Chemical Society National Meeting American in San Diego, CA, in receipt of the 2012 Award in Organometallic Chemistry sponsored by the Dow Corporation. Inorg Chem 2013; 52:6248-59. [DOI: 10.1021/ic4007058] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zachary D. Brown
- University of California at Davis, 1 Shields Avenue, Davis, California 95616,
United States
| | - Philip P. Power
- University of California at Davis, 1 Shields Avenue, Davis, California 95616,
United States
| |
Collapse
|
19
|
Brown ZD, Erickson JD, Fettinger JC, Power PP. Facile, High-Yield Functionalization of Germanium and Tin by Oxidative Insertion of Tetrelenes into the E–H Bonds of Inorganic Acids (E = C, N, O, F): Arene Elimination versus Oxidative Addition and Formation of a Germanium Cation–Water Complex. Organometallics 2013. [DOI: 10.1021/om301121x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zachary D. Brown
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, California 95616,
United States
| | - Jeremy D. Erickson
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, California 95616,
United States
| | - James C. Fettinger
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, California 95616,
United States
| | - Philip P. Power
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, California 95616,
United States
| |
Collapse
|
20
|
Schmidt RK, Müther K, Mück-Lichtenfeld C, Grimme S, Oestreich M. Silylium ion-catalyzed challenging Diels-Alder reactions: the danger of hidden proton catalysis with strong Lewis acids. J Am Chem Soc 2012; 134:4421-8. [PMID: 22309027 DOI: 10.1021/ja211856m] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pronounced Lewis acidity of tricoordinate silicon cations brings about unusual reactivity in Lewis acid catalysis. The downside of catalysis with strong Lewis acids is, though, that these do have the potential to mediate the formation of protons by various mechanisms, and the thus released Brønsted acid might even outcompete the Lewis acid as the true catalyst. That is an often ignored point. One way of eliminating a hidden proton-catalyzed pathway is to add a proton scavenger. The low-temperature Diels-Alder reactions catalyzed by our ferrocene-stabilized silicon cation are such a case where the possibility of proton catalysis must be meticulously examined. Addition of the common hindered base 2,6-di-tert-butylpyridine resulted, however, in slow decomposition along with formation of the corresponding pyridinium ion. Quantitative deprotonation of the silicon cation was observed with more basic (Mes)(3)P to yield the phosphonium ion. A deuterium-labeling experiment verified that the proton is abstracted from the ferrocene backbone. A reasonable mechanism of the proton formation is proposed on the basis of quantum-chemical calculations. This is, admittedly, a particular case but suggests that the use of proton scavengers must be carefully scrutinized, as proton formation might be provoked rather than prevented. Proton-catalyzed Diels-Alder reactions are not well-documented in the literature, and a representative survey employing TfOH is included here. The outcome of these catalyses is compared with our silylium ion-catalyzed Diels-Alder reactions, thereby clearly corroborating that hidden Brønsted acid catalysis is not operating with our Lewis acid. Several simple-looking but challenging Diels-Alder reactions with exceptionally rare dienophile/enophile combinations are reported. Another indication is obtained from the chemoselectivity of the catalyses. The silylium ion-catalyzed Diels-Alder reaction is general with regard to the oxidation level of the α,β-unsaturated dienophile (carbonyl and carboxyl), whereas proton catalysis is limited to carbonyl compounds.
Collapse
Affiliation(s)
- Ruth K Schmidt
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | | | | | | | | |
Collapse
|
21
|
Herrington TJ, Thom AJW, White AJP, Ashley AE. Novel H2 activation by a tris[3,5-bis(trifluoromethyl)phenyl]borane frustrated Lewis pair. Dalton Trans 2012; 41:9019-22. [DOI: 10.1039/c2dt30384a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Müther K, Fröhlich R, Mück-Lichtenfeld C, Grimme S, Oestreich M. A Unique Transition Metal-Stabilized Silicon Cation. J Am Chem Soc 2011; 133:12442-4. [DOI: 10.1021/ja205538t] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Kristine Müther
- Organisch-Chemisches Institut, ‡Röntgenstrukturanalyse, and §Theoretische Organische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Roland Fröhlich
- Organisch-Chemisches Institut, ‡Röntgenstrukturanalyse, and §Theoretische Organische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, ‡Röntgenstrukturanalyse, and §Theoretische Organische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Stefan Grimme
- Organisch-Chemisches Institut, ‡Röntgenstrukturanalyse, and §Theoretische Organische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Martin Oestreich
- Organisch-Chemisches Institut, ‡Röntgenstrukturanalyse, and §Theoretische Organische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
23
|
Müther K, Oestreich M. Self-regeneration of a silylium ion catalyst in carbonyl reduction. Chem Commun (Camb) 2011; 47:334-6. [DOI: 10.1039/c0cc02139c] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Peters R, Fischer DF, Jautze S. Ferrocene and Half Sandwich Complexes as Catalysts with Iron Participation. TOP ORGANOMETAL CHEM 2011. [DOI: 10.1007/978-3-642-14670-1_5] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Matas I, Whittell GR, Partridge BM, Holland JP, Haddow MF, Green JC, Manners I. Synthesis, electronic structure, and reactivity of strained nickel-, palladium-, and platinum-bridged [1]ferrocenophanes. J Am Chem Soc 2010; 132:13279-89. [PMID: 20812743 DOI: 10.1021/ja103367e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The group 10 bis(phosphine)metalla[1]ferrocenophanes, [{Fe(η(5)-C(5)H(4))(2)}M(Pn-Bu(3))(2)] [M = Ni (4a), Pd (4b), and Pt (4c)], have been prepared by the reaction of Li(2)[Fe(η(5)-C(5)H(4))(2)]·tmeda (5, tmeda = N,N,N',N'-tetramethylethylenediamine) with trans-[MCl(2)(Pn-Bu(3))(2)] [M = Ni (trans-6a) and Pd (trans-6b)] and cis-[PtCl(2)(Pn-Bu(3))(2)] (cis-6c), respectively. Single crystal X-ray diffraction revealed highly tilted, strained structures as characterized by α angles of 28.4° (4a), 24.5° (4b), and 25.2° (4c) and a distorted square planar environment for the group 10 metal center. UV/visible spectroscopy and cyclic voltammetry indicated that all three compounds had smaller HOMO-LUMO gaps and were more electron-rich in nature than ferrocene and other comparable [1]ferrocenophanes. DFT calculations suggested that these differences were principally due to the electron-releasing nature of the M(Pn-Bu(3))(2) metal-ligand fragments. Attempts to induce thermal or anionic ring-opening polymerization of 4a-c were unsuccessful and were complicated by, for example, competing ligand dissociation processes or unfavorable chain propagation. In contrast, these species all reacted rapidly with acids effecting clean extrusion of the bis(phosphine)metal fragment. Carbon monoxide inserted cleanly into one of the palladium-carbon bonds of 4b to afford the ring-expanded, acylated product [{Fe(η(5)-C(5)H(4))(η(5)-C(5)H(4))(CO)}Pd(Pn-Bu(3))(2)] (10). The nickel analogue 4a, however, afforded [Ni(CO)(2)(Pn-Bu(3))(2)] whereas the platinum-bridged complex 4c was inert. Remarkably, all compounds 4a-c were readily oxidized by elemental sulfur to afford the [5,5']bicyclopentadienylidene (pentafulvalene) complexes [{η(4):η(0)-C(5)H(4)(C(5)H(4))}M(Pn-Bu(3))(2)] [M = Ni (11a)] and [(η(2)-C(10)H(8))M(Pn-Bu(3))(2)] [M = Pd (11b) and Pt (11c)] by a formal 4-electron oxidation of the carbocyclic ligands. Compounds 11b and 11c represent the first examples of [5,5']bicyclopentadienylidene as a neutral η(2)-ligand. The relative energies of η(2)-coordination with respect to that of η(4):η(0) bonding were investigated for 11a-c by DFT calculations.
Collapse
Affiliation(s)
- Inmaculada Matas
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Herbert DE, Gilroy JB, Staubitz A, Haddow MF, Harvey JN, Manners I. Strain-Induced Cleavage of Carbon−Carbon Bonds: Bridge Rupture Reactions of Group 8 Dicarba[2]metallocenophanes. J Am Chem Soc 2010; 132:1988-98. [DOI: 10.1021/ja9087049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David E. Herbert
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Joe B. Gilroy
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Anne Staubitz
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Mairi F. Haddow
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Jeremy N. Harvey
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Ian Manners
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
27
|
Klare HFT, Bergander K, Oestreich M. Taming the silylium ion for low-temperature Diels-Alder reactions. Angew Chem Int Ed Engl 2010; 48:9077-9. [PMID: 19862787 DOI: 10.1002/anie.200904520] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hendrik F T Klare
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | | | | |
Collapse
|
28
|
|
29
|
Braunschweig H, Radacki K, Schneider A. Reactivity of an oxoboryl complex toward fluorinated aryl boron reagents. Chem Commun (Camb) 2010; 46:6473-5. [DOI: 10.1039/c0cc01802c] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Klare H, Bergander K, Oestreich M. Ein gezähmtes Silyliumion für Diels-Alder-Reaktionen bei niedrigen Temperaturen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904520] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Wrackmeyer B, Klimkina EV, Ackermann T, Milius W. Ferrocenylaluminum-pyridine adducts, lithium tetra(ferrocenyl)alanate, and the molecular structure of tri(ferrocenyl)aluminum-pyridine. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2009.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Kumar M, Cervantes-Lee F, Pannell KH, Shao J. Synthesis and cyclic voltammetric studies of diiron complexes, ER(2)[(eta-C(5)H(4))Fe(L(2))Me](2) (E = C, Si, Ge, Sn; R = H, alkyl; L(2) = diphosphine] and (eta-C(5)H(5))Fe(L(2))ER(2)Fc [Fc = (eta-C(5)H(4))Fe(eta-C(5)H(5))]. Organometallics 2008; 27:4739-4748. [PMID: 19718238 PMCID: PMC2710850 DOI: 10.1021/om8004004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cyclic voltammetric studies on ER(2)[(eta(5)-C(5)H(4))Fe(L(2))Me](2) (L(2) = dppe; ER(2) = CH(2) (1a), SiMe(2) (2a), GeMe(2) (3a), SnMe(2) (4a) revealed two well resolved reversible waves [(1)E(1/2) = -0.33 V, (2)E(1/2) = -0.20 V (for 1a); (1)E(1/2) = -0.35 V, (2)E(1/2) = -0.21 V (for 2a);(1)E(1/2) = -0.36 V, (2)E(1/2) = -0.23 V (for 3a);(1)E(1/2) = -0.36 V, (2)E(1/2) = -0.22 V (for 4a)] in CH(2)Cl(2) suggesting electronic communication between two iron centers which is seen for the first time in this family of organometallic complexes. The resolution between two reversible waves increases in the order of 1a < 2a < 3a < 4a; however, coordinating solvents such as pyridine, PhCN, DMSO and DMF decreased these interactions attributable to the stabilization of cationic species formed after the first oxidation. UV/Vis spectroelectrochemistry of 1a-4a revealed two distinct absorbance patterns for both redox processes and reflected the stepwise oxidation. Homobimetallic complexes containing ferrocenyl groups, (eta(5)-C(5)H(5))Fe(L(2))ER(2)Fc [ER(2) = none, L(2) = cis-dppen (5a), ER(2) = SiMe(2), L(2) = cis-dppen (6a), dppm (6b); ER(2) = GeMe(2), L(2) = cis-dppen (7a), dppm (7b); ER(2) = Sn(t)Bu(2), L(2) = dmpe (8a); Fc = (eta(5)-C(5)H(4))Fe(eta(5)4-C(5)H(5))] were prepared and studied in terms of electrochemistry. The cyclic voltammogram of 5a exhibited two well resolved one electron reversible waves at (1)E(1/2) = -0.21 V and (2)E(1/2) = 0.58 V corresponding to oxidation of the Fe(P-P) and Fc iron atoms respectively. Other complexes in this series (6a/6b, 7a/7b, 8a) containing direct Fe-E-Fc (E = Si, Ge and Sn) bridging units were not stable under electrochemical conditions and rupture of the Fe-E bonds was observed.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Chemistry, University of Texas at El Paso Texas, El Paso, TX. 79968-0513, USA
| | | | | | | |
Collapse
|
33
|
Tamm M. Synthesis and reactivity of functionalized cycloheptatrienyl-cyclopentadienyl sandwich complexes. Chem Commun (Camb) 2008:3089-100. [PMID: 18594712 DOI: 10.1039/b802289e] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article provides an overview of the synthesis and reactivity of functionalized cycloheptatrienyl-cyclopentadienyl transition metal sandwich complexes of the type [(eta(7)-C(7)H(7))M(eta(5)-C(5)H(5))] (M = group 4, 5 or 6 metal), which can be used as building blocks for the preparation of metallopolymers and polymetallic complexes. Emphasis is placed on 16-electron group 4 complexes (M = Ti, Zr, Hf) and their reactivity towards sigma-donor/pi-acceptor ligands, which indicates that these complexes bear a close resemblance to Lewis acidic M(+IV) complexes. Based on theoretical calculations, this behavior can be mainly attributed to the strong and appreciably covalent metal-cycloheptatrienyl interaction with the cycloheptatrienyl ring acting more as a -3 ligand than as a +1 ligand in these mixed ring complexes.
Collapse
Affiliation(s)
- Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Carolo-Wilhelmina zu Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
34
|
Herbert DE, Mayer UFJ, Manners I. Strained metallocenophanes and related organometallic rings containing pi-hydrocarbon ligands and transition-metal centers. Angew Chem Int Ed Engl 2007; 46:5060-81. [PMID: 17587203 DOI: 10.1002/anie.200604409] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The structures, bonding, and ring-opening reactions of strained cyclic carbon-based molecules form a key component of standard textbooks. In contrast, the study of strained organometallic molecules containing transition metals is a much more recent development. A wealth of recent research has revealed fascinating nuances in terms of structure, bonding, and reactivity. Building on initial work on strained ferrocenophanes, a broad range of strained organometallic rings composed of a variety of different metals, pi-hydrocarbon ligands, and bridging elements has now been developed. Such strained species can potentially undergo ring-opening reactions to functionalize surfaces and ring-opening polymerization to form easily processed metallopolymers with properties determined by the presence of the metal and spacer. This Review summarizes the current state of knowledge on the preparation, structural characterization, electronic structure, and reactivity of strained organometallic rings with pi-hydrocarbon ligands and d-block metals.
Collapse
Affiliation(s)
- David E Herbert
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS81TS, UK
| | | | | |
Collapse
|
35
|
Herbert D, Mayer U, Manners I. Gespannte Metallocenophane und ähnliche metallorganische Ringe mit π-Kohlenwasserstoffliganden und Übergangsmetallzentren. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604409] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Tamm M, Kunst A, Bannenberg T, Randoll S, Jones PG. Synthesis and Reactivity of Silicon- and Germanium-Bridged ansa-Cycloheptatrienyl−Cyclopentadienyl Titanium Complexes. Organometallics 2006. [DOI: 10.1021/om060928l] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Carolo-Wilhelmina, Hagenring 30, D-38106 Braunschweig, Germany
| | - Andreas Kunst
- Institut für Anorganische und Analytische Chemie, Technische Universität Carolo-Wilhelmina, Hagenring 30, D-38106 Braunschweig, Germany
| | - Thomas Bannenberg
- Institut für Anorganische und Analytische Chemie, Technische Universität Carolo-Wilhelmina, Hagenring 30, D-38106 Braunschweig, Germany
| | - Sören Randoll
- Institut für Anorganische und Analytische Chemie, Technische Universität Carolo-Wilhelmina, Hagenring 30, D-38106 Braunschweig, Germany
| | - Peter G. Jones
- Institut für Anorganische und Analytische Chemie, Technische Universität Carolo-Wilhelmina, Hagenring 30, D-38106 Braunschweig, Germany
| |
Collapse
|
37
|
Tanabe M, Bourke SC, Herbert DE, Lough AJ, Manners I. Reversible, Strain-Controlled Haptotropic Shifts of Cyclopentadienyl Ligands in [1]- and [2]Metallocenophanes. Angew Chem Int Ed Engl 2005; 44:5886-90. [PMID: 16092137 DOI: 10.1002/anie.200501155] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Makoto Tanabe
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | | | |
Collapse
|
38
|
Tanabe M, Bourke SC, Herbert DE, Lough AJ, Manners I. Reversible, Strain-Controlled Haptotropic Shifts of Cyclopentadienyl Ligands in [1]- and [2]Metallocenophanes. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|