1
|
Kar S, Maharana PK, Maity S, Trivedi V, Punniyamurthy T. Copper-catalyzed (4+3)-cycloaddition of 4-indolylcarbinols with aziridines: stereoselective synthesis of azepinoindoles. Chem Commun (Camb) 2024; 60:12008-12011. [PMID: 39356090 DOI: 10.1039/d4cc03544e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Copper(I)-catalyzed (4+3)-cycloaddition of 4-indolylcarbinols with aziridines has been accomplished to furnish azepinoindoles. The chirality transfer, substrate scope, functional group tolerance, natural product modification and tandem C-C/C-N bond formation are the important practical features.
Collapse
Affiliation(s)
- Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Swagata Maity
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Vishal Trivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
2
|
Li H, Chen T, Wang Z, Li Y, Lu Y, Jin X, Xu N, Liu J. Rhodium(III)-Catalyzed C-H Activation/[5 + 2] Cascade Annulation of Aroyl Hydrazides with Iodonium Ylides for the Synthesis of Seven-Membered Dibenzodiazepinediones. J Org Chem 2024; 89:13412-13417. [PMID: 39213646 DOI: 10.1021/acs.joc.4c01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A novel Rh(III)-catalyzed C-H activation/[5 + 2] cascade annulation of aroyl hydrazides with iodonium ylides is accomplished, in which diverse seven-membered dibenzodiazepinediones were afforded in moderate to excellent yields. This annulation reaction features an ideal functional group tolerance and a wide substrate scope. Large-scale and derivatization reactions were conducted to demonstrate the potential utility of this transformation.
Collapse
Affiliation(s)
- He Li
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Tao Chen
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhiwei Wang
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yuxin Li
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ye Lu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xinxin Jin
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ning Xu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jinglin Liu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
3
|
Kar S, Maharana PK, Punniyamurthy T, Trivedi V. Tandem (4 + 3)-Annulation of Aziridines: Stereoselective Access to Fused Azepinoindoles. Org Lett 2023. [PMID: 38051106 DOI: 10.1021/acs.orglett.3c03547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A stereoselective tandem (4 + 3)-coupling of aziridines with 4-alkylidene indole malonates has been disclosed under Cu-catalysis involving a base-promoted annulation. The methodology serves as a potential approach toward the facile construction of fused azepinoindoles with good yields and diastereoselectivities. Late-stage natural product and drug modification as well as preliminary investigations for the enantioselective (4 + 3)-annulation are important practical features.
Collapse
Affiliation(s)
- Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Prabhat K Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | | - Vishal Trivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
4
|
Kaasik M, Chen PP, Ričko S, Jørgensen KA, Houk KN. Asymmetric [4 + 2], [6 + 2], and [6 + 4] Cycloadditions of Isomeric Formyl Cycloheptatrienes Catalyzed by a Chiral Diamine Catalyst. J Am Chem Soc 2023; 145:23874-23890. [PMID: 37862136 DOI: 10.1021/jacs.3c09551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Novel asymmetric aminocatalytic cycloadditions are described between formyl cycloheptatrienes and 6,6-dimethylfulvene that lead to [4 + 2], [6 + 2], and [4 + 6] cycloadducts. The unprecedented reaction course is dependent on the position of the formyl functionality in the cycloheptatriene core, and each formyl cycloheptatriene isomer displays a distinct reactivity pattern. The formyl cycloheptatriene isomers are activated by a chiral primary diamine catalyst, and the activation mode is dependent on the position of the formyl functionality relative to the cycloheptatriene core. The [4 + 2] and [6 + 2] cycloadducts are formed via rare iminocatalytic inverse electron-demand cycloadditions, while the [4 + 6] cycloadduct is formed by a normal electron-demand cycloaddition. The reactivity displayed by the different formyl cycloheptatrienes was investigated by DFT calculations. These computational studies account for the different reaction paths for the three isomeric formyl cycloheptatrienes. The aminocatalytic [4 + 2], [6 + 2], and [4 + 6] cycloadditions proceed by stepwise processes, and the interplay between conjugation, substrate distortion, and dispersive interactions between the fulvene and aminocatalyst mainly defines the outcome of each cycloaddition.
Collapse
Affiliation(s)
- Mikk Kaasik
- Department of Chemistry, Aarhus University, DK-80000 Aarhus C, Denmark
| | - Pan-Pan Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Sebastijan Ričko
- Department of Chemistry, Aarhus University, DK-80000 Aarhus C, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Li CL, Yang Y, Zhou Y, Duan ZC, Yu ZX. Strain-Release-Controlled [4 + 2 + 1] Reaction of Cyclopropyl-Capped Diene-ynes/Diene-enes and Carbon Monoxide Catalyzed by Rhodium. J Am Chem Soc 2023; 145:5496-5505. [PMID: 36812021 DOI: 10.1021/jacs.3c00134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Achieving transition-metal-catalyzed reactions of diene-ynes/diene-enes and carbon monoxide (CO) to deliver [4 + 2 + 1] cycloadducts, rather than the kinetically favored [2 + 2 + 1] products, is challenging. Here, we report that this can be solved by adding a cyclopropyl (CP) cap to the diene moiety of the original substrates. The resulting CP-capped diene-ynes/diene-enes can react with CO under Rh catalysis to give [4 + 2 + 1] cycloadducts exclusively without forming [2 + 2 + 1] products. This reaction has a broad scope and can be used to synthesize useful 5/7 bicycles with a CP moiety. Of the same importance, the CP moiety in the [4 + 2 + 1] cycloadducts can act as an intermediate group for further transformations so that other challenging bicyclic 5/7 and tricyclic 5/7/5, 5/7/6, and 5/7/7 skeletons, some of which are widely found in natural products, can be accessed. The mechanism of this [4 + 2 + 1] reaction has been investigated by quantum chemical calculations, and the role of the CP group in avoiding the possible side [2 + 2 + 1] reaction has been identified, showing that the [4 + 2 + 1] is controlled by releasing the ring strain in the methylenecyclopropyl (MCP) group (about 7 kcal/mol) in the CP-capped dienes.
Collapse
Affiliation(s)
- Chen-Long Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yusheng Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhao-Chen Duan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Progress in organocatalytic asymmetric (4+3) cycloadditions for the enantioselective construction of seven-membered rings. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
7
|
Yang J, Zhang P, Shen Z, Zhou Y, Yu ZX. Unprecedented endo-oxidative cyclometallation and [4 + 3] cycloaddition of diene-vinylcyclopropanes. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
8
|
Unveiling the Chemistry and Synthetic Potential of Catalytic Cycloaddition Reaction of Allenes: A Review. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020704. [PMID: 36677762 PMCID: PMC9860688 DOI: 10.3390/molecules28020704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Allenes with two carbon-carbon double bonds belong to a unique class of unsaturated hydrocarbons. The central carbon atom of allene is sp hybridized and forms two σ-bonds and two π-bonds with two terminal sp2 hybridized carbon atoms. The chemistry of allenes has been well documented over the last decades. They are more reactive than alkenes due to higher strain and exhibit significant axial chirality, thus playing a vital role in asymmetric synthesis. Over a variety of organic transformations, allenes specifically undergo classical metal catalyzed cycloaddition reactions to obtain chemo-, regio- and stereoselective cycloadducts. This review briefly describes different types of annulations including [2+2], [2+2+1], [3+2], [2+2+2], [4+2], [5+2], [6+2] cycloadditions using titanium, cobalt, rhodium, nickel, palladium, platinum, gold and phosphine catalyzed reactions along with a mechanistic study of some highlighted protocols. The synthetic applications of these reactions towards the synthesis of natural products such as aristeromycin, ent-[3]-ladderanol, waihoensene(-)-vindoline and (+)-4-epi-vindoline have also been described.
Collapse
|
9
|
Huang J, Jiang B, Zhang X, Gao Y, Xu X, Miao Z. Triethyamine‐promoted [5+3] Cycloadditions for Regio‐ and Diastereoselective Synthesis of Functionalized aza‐Bicyclo[3.3.1]alkenones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | | | - Zhiwei Miao
- Institute of Elemento-Organic Chemistry CHINA
| |
Collapse
|
10
|
Nicolai S, Waser J. (4+3) Annulation of Donor-Acceptor Cyclopropanes and Azadienes: Highly Stereoselective Synthesis of Azepanones. Angew Chem Int Ed Engl 2022; 61:e202209006. [PMID: 35833420 PMCID: PMC9545371 DOI: 10.1002/anie.202209006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 12/17/2022]
Abstract
Azepanes are important seven-membered heterocycles, which are present in numerous natural and synthetic compounds. However, the development of convergent synthetic methods to access them remains challenging. Herein, we report the Lewis acid catalyzed (4+3) annulative addition of aryl and amino donor-acceptor cyclopropanes with 2-aza-1,3-dienes. Densely substituted azepane derivatives were obtained in good to excellent yields and with high diastereoselectivity. The reaction occurred under mild conditions with ytterbium triflate as the catalyst. The use of copper triflate with a trisoxazoline (Tox) ligand led to an enantioselective transformation. The obtained cycloadducts were convenient substrates for a series of further modifications, showing the synthetic utility of these compounds.
Collapse
Affiliation(s)
- Stefano Nicolai
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
| |
Collapse
|
11
|
Zhang Z, Cai T, Zhan Z, Xu H, Yu L, Luo X, Li C, Gao Y, Wei X, Chen X, Shen R. Assembly of 5 H-dibenzo[ a, d]cycloheptenes by a formal [5 + 2] annulation of ortho-aryl alkynyl benzyl alcohols with arenes. Org Biomol Chem 2022; 20:7221-7225. [PMID: 36053155 DOI: 10.1039/d2ob01335e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new synthetic methodology for the synthesis of 5H-dibenzo[a,d]cycloheptenes from ortho-aryl alkynyl benzyl alcohols and arenes via a Tf2O-mediated formal [5 + 2] annulation reaction has been achieved. From this transformation, structurally diverse 5H-dibenzo[a,d]cycloheptenes were achieved in moderate to good yields. This transformation probably involves an intermolecular Friedel-Crafts-type alkylation and a subsequent intramolecular 7-endo-dig cyclization in one pot, highlighting the high efficiency, regioselectivity, and step-economy of this protocol.
Collapse
Affiliation(s)
- Zhebing Zhang
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Tao Cai
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China. .,Zhejiang Engineering Research Center of Fat-Soluble Vitamin, China. .,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zhaohui Zhan
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Huiting Xu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Lemao Yu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Xiang Luo
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Chunmei Li
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Yuzhen Gao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xuemei Wei
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Xinzhi Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Runpu Shen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China. .,Zhejiang Engineering Research Center of Fat-Soluble Vitamin, China.
| |
Collapse
|
12
|
Yokoyama H, Kimaru N, Kozuma A, Komatsuki K, Yamada T, Saito K. Decarboxylative Intramolecular Cyclization and Sequential Halogenation of Cyclic Enol Carbonates —Synthesis of Stereochemically-defined Seven-membered Carbocycles—. CHEM LETT 2022. [DOI: 10.1246/cl.220211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Haruki Yokoyama
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Natsuki Kimaru
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Akane Kozuma
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Keiichi Komatsuki
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Tohru Yamada
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kodai Saito
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
13
|
Woldegiorgis AG, Muhammad S, Lin X. Asymmetric Cycloaddition/Annulation Reactions by Chiral Phosphoric Acid Catalysis: Recent Advances. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Xufeng Lin
- Zhejiang University Department of Chemistry 38 Zheda Road 310027 Hangzhou CHINA
| |
Collapse
|
14
|
Yang Y, Tian ZY, Li CL, Yu ZX. Why [4 + 2 + 1] but Not [2 + 2 + 1]? Why Allenes? A Mechanistic Study of the Rhodium-Catalyzed [4 + 2 + 1] Cycloaddition of In Situ Generated Ene-Ene-Allenes and Carbon Monoxide. J Org Chem 2022; 87:10576-10591. [PMID: 35904504 DOI: 10.1021/acs.joc.2c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transition metal-catalyzed [4 + 2 + 1] cycloaddition of in situ generated ene/yne-ene-allenes (from ene/yne-ene propargyl esters) and carbon monoxide (CO) gives the [4 + 2 + 1] cycloadducts rather than [2 + 2 + 1] cycloadducts. Investigating the mechanism of this [4 + 2 + 1] reaction and understanding why the [2 + 2 + 1] reaction does not compete and the role of the allene moiety in the substrates are important. This is also helpful to guide the future design of new [4 + 2 + 1] cycloadditions. Reported here are the kinetic and computed studies of the [4 + 2 + 1] reactions of ene-ene propargyl esters and CO. A quantum chemical study (at the DLPNO-CCSD(T)//BMK level) revealed that the [4 + 2 + 1] reaction includes four key steps, which are 1,3-acyloxy migration (rate-determining step), oxidative cyclization, CO migratory insertion, and reductive elimination. The allene moiety in the substrates is critical for providing additional coordination to the rhodium center in the final step of the catalytic cycle, which in turn favors the reductive elimination transition state in the [4 + 2 + 1] rather than in the [2 + 2 + 1] pathway. The CO insertion step in the [4 + 2 + 1] reaction, which could occur through either the UP (favored here) or DOWN CO insertion pathway, has also been deeply scrutinized, and some guidance from this analysis has been provided to help the future design of new [4 + 2 + 1] reactions. Quantum chemical calculations have also been applied to explain why [4 + 2] and [4 + 1] cycloadditions do not happen and how trienes as side products for some substrates are generated.
Collapse
Affiliation(s)
- Yusheng Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zi-You Tian
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Chen-Long Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Nicolai S, Waser J. (4+3) Annulation of Donor‐Acceptor Cyclopropanes and Azadienes: Highly Stereoselective Synthesis of Azepanones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Stefano Nicolai
- EPFL ISIC: Ecole polytechnique federale de Lausanne Institut des Sciences et Ingenierie Chimiques SB ISIC EPFL SB ISIC LCSOBCH 4301 (Batochime UNIL)Av. F.-A. Forel 2 1015 Lausanne SWITZERLAND
| | - Jerome Waser
- EPFL: Ecole Polytechnique Federale de Lausanne SB, Institut des sciences et ingénierie chimiques EPFL SB ISIC LCSOBCH 4306 (Bât. BCH)Av. F.-A. Forel 2 1015 Lausanne SWITZERLAND
| |
Collapse
|
16
|
Zhang FL, Feng T. Diterpenes Specially Produced by Fungi: Structures, Biological Activities, and Biosynthesis (2010–2020). J Fungi (Basel) 2022; 8:jof8030244. [PMID: 35330246 PMCID: PMC8951520 DOI: 10.3390/jof8030244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/11/2022] Open
Abstract
Fungi have traditionally been a very rewarding source of biologically active natural products, while diterpenoids from fungi, such as the cyathane-type diterpenoids from Cyathus and Hericium sp., the fusicoccane-type diterpenoids from Fusicoccum and Alternaria sp., the guanacastane-type diterpenoids from Coprinus and Cercospora sp., and the harziene-type diterpenoids from Trichoderma sp., often represent unique carbon skeletons as well as diverse biological functions. The abundances of novel skeletons, biological activities, and biosynthetic pathways present new opportunities for drug discovery, genome mining, and enzymology. In addition, diterpenoids peculiar to fungi also reveal the possibility of differing biological evolution, although they have similar biosynthetic pathways. In this review, we provide an overview about the structures, biological activities, evolution, organic synthesis, and biosynthesis of diterpenoids that have been specially produced by fungi from 2010 to 2020. We hope this review provides timely illumination and beneficial guidance for future research works of scholars who are interested in this area.
Collapse
|
17
|
Saunthwal RK, Mortimer J, Orr-Ewing AJ, Clayden J. Enantioselective one-carbon expansion of aromatic rings by simultaneous formation and chromoselective irradiation of a transient coloured enolate. Chem Sci 2022; 13:2079-2085. [PMID: 35308841 PMCID: PMC8848985 DOI: 10.1039/d1sc06684f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Enantioenriched seven-membered carbocycles are motifs in many molecules of structural and biological interest. We report a simple, practical, transition metal-free and mechanistically unusual method for the enantioselective synthesis of substituted cycloheptatrienes. By forming a coloured enolate with an appropriate absorption band and selectively irradiating in situ, we to initiate a tandem, asymmetric anionic and photochemical ring expansion of readily accessible N-benzylbenzamides. The cascade of reactions leading to the products entails enantioselective benzylic deprotonation with a chiral lithium amide, dearomatizing cyclization of the resulting configurationally defined organolithium to give an extended amide enolate, and photochemically induced formal [1,7]-sigmatropic rearrangement and 6π-electrocyclic ring-opening - the latter all evidently being stereospecific - to deliver enantioenriched cycloheptatrienes with embedded benzylic stereocentres.
Collapse
Affiliation(s)
- Rakesh K Saunthwal
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - James Mortimer
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
18
|
Sadi S, Khorief Nacereddine A, Djerourou A. The effects of solvent nature and steric hindrance on the reactivity, mechanism and selectivity of the cationic imino‐Diels–Alder cycloaddition reaction between cationic 2‐azadienes and arylpropene. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sabrina Sadi
- Synthesis and Biocatalysis Organic Laboratory, Chemistry Department, Faculty of Sciences Badji Mokhtar‐Annaba University Annaba Algeria
| | - Abdelmalek Khorief Nacereddine
- Laboratory of Physical Chemistry and Biology of Materials, Department of Physics and Chemistry Higher Normal School of Technological Education—Skikda Skikda Algeria
| | - Abdelhafid Djerourou
- Synthesis and Biocatalysis Organic Laboratory, Chemistry Department, Faculty of Sciences Badji Mokhtar‐Annaba University Annaba Algeria
| |
Collapse
|
19
|
Zhao X, Xia Z, Zhang M, Zhou N. Radical-Mediated Tandem Cyclization to Construct Seven-Membered Nitrogen/Oxygen Heterocycles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202209032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Yao T, Li J, Wang J, Zhao C. Recent Advances for the Construction of Seven-Membered Ring Catalyzed by N-Heterocyclic Carbenes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Liu Z, Yang Y, Jiang X, Song Q, Zanoni G, Liu S, Bi X. Dearomative [4 + 3] cycloaddition of furans with vinyl- N-triftosylhydrazones by silver catalysis: stereoselective access to oxa-bridged seven-membered bicycles. Org Chem Front 2022. [DOI: 10.1039/d2qo00256f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A practical dearomative [4 + 3] cycloaddition of furans with vinylcarbenes to access oxa-bridged seven-membered carbocycles, with complete and predictable stereoselectivity, is achieved by merging silver catalysis and vinyl-N-triftosylhydrazones.
Collapse
Affiliation(s)
- Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yong Yang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xinyu Jiang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Shaopeng Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Kato R, Saito H, Uda S, Domon D, Ikeuchi K, Suzuki T, Tanino K. Synthesis of Seven-Membered Cross-Conjugated Cyclic Trienes by 8π Electrocyclic Reaction. Org Lett 2021; 23:8878-8882. [PMID: 34714079 DOI: 10.1021/acs.orglett.1c03383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A method for the synthesis of 3-methylene-1,4-cycloheptadiene derivatives via an 8π electrocyclization reaction was developed. The triene substrate bearing a phosphate or carbamate group was prepared from γ,δ-unsaturated esters and α,β-unsaturated aldehydes in four steps. Upon treatment with NaHMDS or KHMDS, the substrate formed a heptatrienyl anion, which underwent electrocyclization and subsequent β-elimination of the leaving group. The product could be converted into a tropylium salt in two steps.
Collapse
Affiliation(s)
- Ranmaru Kato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroki Saito
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Shoko Uda
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Daisuke Domon
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazutada Ikeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
23
|
Liang Y, Kan C, Barve BD, Kuo Y, Fang H, Li W. Metal‐Free, Base‐Promoted, Tandem Pericyclic Reaction: A One‐Pot Approach for Cycloheptane‐Annelated Chromones from γ‐Alkynyl‐1,3‐Diketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi‐En Liang
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan, R.O.C
- Department of Chemical Engineering and Biotechnology National Taipei University of Technology Taipei 10608 Taiwan, R.O.C
| | - Chih‐Yu Kan
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan, R.O.C
| | - Balaji D. Barve
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan, R.O.C
- Department of Chemistry National Taiwan Normal University Taipei 10610 Taiwan, R.O.C
| | - Yao‐Haur Kuo
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan, R.O.C
| | - Hsu‐Wei Fang
- Department of Chemical Engineering and Biotechnology National Taipei University of Technology Taipei 10608 Taiwan, R.O.C
| | - Wen‐Tai Li
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan, R.O.C
| |
Collapse
|
24
|
Andreou D, Essien NB, Pubill-Ulldemolins C, Terzidis MA, Papadopoulos AN, Kostakis GE, Lykakis IN. Skeletally Tunable Seven-Membered-Ring Fused Pyrroles. Org Lett 2021; 23:6685-6690. [PMID: 34424721 DOI: 10.1021/acs.orglett.1c02251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We describe a copper-mediated method that enables the synthesis of seven-membered-ring fused pyrroles (7-mrFPs). The protocol proceeds via an in situ spiro-intermediate ring expansion and tolerates a library of 7-mrFP derivatives with a broad range of functional groups in a simple step with tangible parameters and substrate adaptations. These rare 7-mrFPs are now accessible on a millimolar scale, and selected examples exhibit high antioxidant activity.
Collapse
Affiliation(s)
- Dimitrios Andreou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Nsikak B Essien
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN19QJ, United Kingdom
| | | | - Michael A Terzidis
- Department of Nutritional Sciences & Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Athanasios N Papadopoulos
- Department of Nutritional Sciences & Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN19QJ, United Kingdom
| | - Ioannis N Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
25
|
Evans PA, Dushnicky MJ, Cho D, Majhi J, Choi S, Pipaliya BV, Inglesby PA, Baik M. Diastereoselective Rhodium‐Catalyzed [(3+2+2)] Carbocyclization Reactions with Tethered Alkynylidenecyclopropanes: Synthesis of the Tremulane Sesquiterpene Natural Products. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- P. Andrew Evans
- Department of Chemistry Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
- Xiangya School of Pharmaceutical Science Central South University Changsha 410013 Hunan P. R. of China
| | - Molly J. Dushnicky
- Department of Chemistry Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Dasol Cho
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Jadab Majhi
- Department of Chemistry Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Seulhui Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Bhavin V. Pipaliya
- Department of Chemistry Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Phillip A. Inglesby
- Department of Chemistry The University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Mu‐Hyun Baik
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
26
|
Wang J, Zhao L, Li C, Zhao L, Zhao K, Hu Y, Hu L. Iridium‐Catalyzed [4+3] Cyclization of
ortho
‐Tosylaminophenyl‐Substituted
para
‐Quinone Methides with Vinylic Oxiranes/Vinyl Aziridines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junwei Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine School of Pharmacy Nanjing University of Chinese Medicine Nanjing P. R. China
| | - Lin Zhao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine School of Pharmacy Nanjing University of Chinese Medicine Nanjing P. R. China
| | - Caihong Li
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine School of Pharmacy Nanjing University of Chinese Medicine Nanjing P. R. China
| | - Lei Zhao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine School of Pharmacy Nanjing University of Chinese Medicine Nanjing P. R. China
| | - Kun Zhao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine School of Pharmacy Nanjing University of Chinese Medicine Nanjing P. R. China
| | - Yang Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine School of Pharmacy Nanjing University of Chinese Medicine Nanjing P. R. China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine School of Pharmacy Nanjing University of Chinese Medicine Nanjing P. R. China
| |
Collapse
|
27
|
Malasala S, Polomoni A, Chelli SM, Kar S, Madhavi YV, Nanduri S. A microwave-assisted copper-mediated tandem approach for fused quinazoline derivatives. Org Biomol Chem 2021; 19:1854-1859. [PMID: 33565553 DOI: 10.1039/d0ob02312d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A method for the microwave-assisted copper-mediated oxidative coupling reaction of different aldehydes and quinazolines/benzimidazoles has been developed for the synthesis of fused-polycyclic systems via new C-N bond formation. The current methodology involves the use of environmentally benign NH4OAc as the amine source in the presence of 2-propanol as the solvent. This novel tandem reaction approach offers a rapid and straightforward access to complex fused quinazoline derivatives in an efficient manner.
Collapse
Affiliation(s)
- Satyaveni Malasala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Anusha Polomoni
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Sai Manohar Chelli
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh 515 134, India
| | - Swayamsidda Kar
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh 515 134, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
28
|
Darses B, Maldivi P, Philouze C, Dauban P, Poisson JF. Asymmetric Intramolecular Buchner Reaction: From High Stereoselectivity to Coexistence of Norcaradiene, Cycloheptatriene, and an Intermediate Form in the Solid State. Org Lett 2021; 23:300-304. [PMID: 33393310 DOI: 10.1021/acs.orglett.0c03774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bicyclic compounds bearing a quaternary stereogenic center have been obtained using asymmetric intramolecular Buchner reaction with excellent yields and level of enantioselectivity. X-ray crystallography determination of the absolute configuration of one product has led to the serendipitous observation of an unusual behavior within the crystal structure, with equilibrating norcaradiene and cycloheptatriene valence isomers at the solid state, as well as an even more unexpected intermediate form. DFT calculations were performed to support these observations.
Collapse
Affiliation(s)
- Benjamin Darses
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France.,Institut de Chimie des Substances Naturelles, CNRS UPR-2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Pascale Maldivi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | | | - Philippe Dauban
- Institut de Chimie des Substances Naturelles, CNRS UPR-2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
29
|
Synthesis of Polycyclic Ether-Benzopyrans and In Vitro Inhibitory Activity against Leishmania tarentolae. Molecules 2020; 25:molecules25225461. [PMID: 33233418 PMCID: PMC7700287 DOI: 10.3390/molecules25225461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 11/21/2022] Open
Abstract
Construction of a focused library of polycyclic ether-benzopyrans was undertaken in order to discover new therapeutic compounds that affect Leishmania growth and infectivity. This is especially of interest since there are few drug therapies for leishmaniasis that do not have serious drawbacks such high cost, side effects, and emerging drug resistance. The construction of these polycyclic ether-benzopyrans utilized an acetoxypyranone-alkene [5+2] cycloaddition and the Suzuki-Miyaura cross-coupling. The multi-gram quantity of the requisite aryl bromide was obtained followed by effective Pd-catalyzed coupling with boronic acid derivatives. Compounds were tested in vitro using the parasitic protozoan, Leishmania tarentolae. Effects of concentration, time, and exposure to light were evaluated. In addition, the effects on secreted acid phosphatase activity and nitric oxide production were investigated, since both have been implicated in parasite infectivity. The data presented herein are indicative of disruption of the Leishmania tarentolae and thus provide impetus for the development and testing of a more extensive library.
Collapse
|
30
|
Mochimatsu T, Aota Y, Kano T, Maruoka K. CuCl
2
‐Mediated Oxidative Intramolecular α‐Arylation of Ketones with Phenolic Nucleophiles via Oxy‐Allyl Cation Intermediates. Chem Asian J 2020; 15:3816-3819. [DOI: 10.1002/asia.202001032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/01/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Takuto Mochimatsu
- Department of Chemistry Graduate School of Science Kyoto University Sakyo, Kyoto 606-8502 Japan
| | - Yusuke Aota
- Department of Chemistry Graduate School of Science Kyoto University Sakyo, Kyoto 606-8502 Japan
| | - Taichi Kano
- Department of Chemistry Graduate School of Science Kyoto University Sakyo, Kyoto 606-8502 Japan
| | - Keiji Maruoka
- Department of Chemistry Graduate School of Science Kyoto University Sakyo, Kyoto 606-8502 Japan
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo, Kyoto 606-8501 Japan
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
31
|
Trost BM, Zuo Z, Schultz JE. Transition-Metal-Catalyzed Cycloaddition Reactions to Access Seven-Membered Rings. Chemistry 2020; 26:15354-15377. [PMID: 32705722 DOI: 10.1002/chem.202002713] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/12/2020] [Indexed: 02/06/2023]
Abstract
The efficient and selective synthesis of functionalized seven-membered rings remains an important pursuit within synthetic organic chemistry, as this motif appears in numerous drug-like molecules and natural products. Use of cycloaddition reactions remains an attractive approach for their construction within the perspective of atom and step economy. Additionally, the ability to combine multiple components in a single reaction has the potential to allow for efficient combinatorial strategies of diversity-oriented synthesis. The inherent entropic penalty associated with achieving these transformations has impressively been overcome with development of catalysis, whereby the reaction components can be pre-organized through activation by transition-metal-catalysis. The fine-tuning of metal/ligand combinations as well as reaction conditions allows for achieving chemo-, regio-, diastereo- and enantioselectivity in these transformations. Herein, we discuss recent advances in transition-metal-catalyzed construction of seven-membered rings via combination of 2-4 components mediated by a variety of metals. An emphasis is placed on the mechanistic aspects of these transformations to both illustrate the state of the science and to highlight the unique application of novel processes of transition-metals in these transformations.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, California, 94305-5080, USA
| | - Zhijun Zuo
- Department of Chemistry, Stanford University, Stanford, California, 94305-5080, USA
| | - Johnathan E Schultz
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, 08901, USA
| |
Collapse
|
32
|
Rokey SN, Simanis JA, Law CM, Pohani S, Willens Behrends S, Bulandr JJ, Ferrence GM, Goodell JR, Andrew Mitchell T. Intramolecular asymmetric oxidopyrylium-based [5 + 2] cycloadditions. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Yang W, Huang Z, Liu Y, Yu X, Deng W. Highly Regio‐, Diastereo‐, and Enantioselective Assembly of Azepino[2,3‐
b
]indoles
via
Palladium‐Catalyzed
[4 + 3] Cycloaddition
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Wu‐Lin Yang
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Zesheng Huang
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yang‐Zi Liu
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xingxin Yu
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Wei‐Ping Deng
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University Jinhua Zhejiang 321004 China
| |
Collapse
|
34
|
McLeod D, Cherubini-Celli A, Sivasothirajah N, McCulley CH, Christensen ML, Jørgensen KA. Enantioselective 1,3-Dipolar [6+4] Cycloaddition of Pyrylium Ions and Fulvenes towards Cyclooctanoids. Chemistry 2020; 26:11417-11422. [PMID: 32216113 DOI: 10.1002/chem.202001369] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 01/20/2023]
Abstract
Organocatalytic enantioselective 1,3-dipolar [6+4] cycloadditions of pyrylium ion intermediates with fulvenes promoted by a chiral primary amine catalyst have been developed to proceed in moderate to good yields and high enantioselectivities. The resultant chiral bicyclo[6.3.0]undecane scaffold containing a transannular bridging ether is densely functionalised providing a rigid scaffold for further manipulations. Computational studies give important insights into the role of the primary amine catalyst. Analysis of the reaction shows that the catalytic reaction proceeds in a step-wise manner and rationalises the stereochemical outcome of the reaction. Several stereoselective complexity-generating transformations, facilitated by the diverse functional groups and transannular bridge, are presented, highlighting the versatility of the core towards a number of the cyclooctanoid natural products.
Collapse
Affiliation(s)
- David McLeod
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | | | | | - Christina H McCulley
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | | | - Karl Anker Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| |
Collapse
|
35
|
Grabowski JP, Ferrence GM, Mitchell TA. Efforts toward the total synthesis of (±)-toxicodenane A utilizing an oxidopyrylium-based [5+2] cycloaddition of a silicon-tethered BOC-pyranone. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Garbo M, Besnard C, Guénée L, Mazet C. Access to Optically Active 7-Membered Rings by a 2-Step Synthetic Sequence: Cu-Catalyzed Stereoselective Cyclopropanation of Branched 1,3-Dienes/Rh-Catalyzed Stereoconvergent [5 + 2] Cycloaddition. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Michele Garbo
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
37
|
Tomás‐Mendivil E, Devillard M, Regnier V, Pecaut J, Martin D. Air‐Stable Oxyallyl Patterns and a Switchable N‐Heterocyclic Carbene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Marc Devillard
- Univ. Grenoble Alpes CNRS DCM 38000 Grenoble France
- Current address: Université de Rennes CNRS, ISCR, UMR6226 35042 Rennes France
| | | | - Jacques Pecaut
- Univ. Grenoble Alpes, CEA CNRS, INAC-SyMMES, UMR 5819 38000 Grenoble France
| | - David Martin
- Univ. Grenoble Alpes CNRS DCM 38000 Grenoble France
| |
Collapse
|
38
|
Li Z, Li S, Kan T, Wang X, Xin X, Hou Y, Gong P. Silver(I)‐ and Base‐Mediated formal [4+3] Cycloaddition of
in Situ
generated 1,2‐Diaza‐1,3‐dienes with
C,N
‐Cyclic Azomethine Imines: An Efficient Protocol for the Synthesis of Tetrazepine Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zefei Li
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Shuaikang Li
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Tianjiao Kan
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Xinyue Wang
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Xin Xin
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Yunlei Hou
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Ping Gong
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| |
Collapse
|
39
|
Tomás-Mendivil E, Devillard M, Regnier V, Pecaut J, Martin D. Air-Stable Oxyallyl Patterns and a Switchable N-Heterocyclic Carbene. Angew Chem Int Ed Engl 2020; 59:11516-11520. [PMID: 32277582 DOI: 10.1002/anie.202002669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/10/2020] [Indexed: 01/22/2023]
Abstract
Oxyallyl derivatives are typically elusive compounds. Even recently reported "stabilized" 1,3-diaminooxyallyl species are still highly reactive and have short lifetimes at room temperature. Herein, we report the synthesis and preliminary study of mesoionic pyrimidine derivatives that feature 1,3-bis(dimethylamino)oxyallyl patterns with an unprecedented level of stabilization. The latter are not only insensitive towards air and moisture, but they are also compatible with the formation of an ancillary stable N-heterocyclic carbene moiety. As the oxyallyl pattern is proton-responsive, it allows the reversible switching of the electronic properties of the carbene, as a ligand.
Collapse
Affiliation(s)
| | - Marc Devillard
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France.,Current address: Université de Rennes, CNRS, ISCR, UMR6226, 35042, Rennes, France
| | | | - Jacques Pecaut
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, UMR 5819, 38000, Grenoble, France
| | - David Martin
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| |
Collapse
|
40
|
Sasaki I, Ohmura T, Suginome M. Construction of Silicon-Containing Seven-Membered Rings by Catalytic [4 + 2 + 1] Cycloaddition through Rhodium Silylenoid. Org Lett 2020; 22:2961-2966. [DOI: 10.1021/acs.orglett.0c00690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ikuo Sasaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Toshimichi Ohmura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
41
|
Aota Y, Doko Y, Kano T, Maruoka K. Brønsted Acid-Catalyzed Intramolecular α-Arylation of Ketones with Phenolic Nucleophiles via Oxy-Allyl Cation Intermediates. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yusuke Aota
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
| | - Yuki Doko
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
| | - Taichi Kano
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
| | - Keiji Maruoka
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo 606-8501 Kyoto Japan
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; 510006 Guangzhou China
| |
Collapse
|
42
|
Blaszczyk SA, Glazier DA, Tang W. Rhodium-Catalyzed (5 + 2) and (5 + 1) Cycloadditions Using 1,4-Enynes as Five-Carbon Building Blocks. Acc Chem Res 2020; 53:231-243. [PMID: 31820914 PMCID: PMC7261388 DOI: 10.1021/acs.accounts.9b00477] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cycloaddition reactions are a hallmark in organic synthesis because they provide an efficient way to construct highly substituted carbo- and heterocycles found in natural products and pharmaceutical agents. Most cycloadditions occur under thermal or photochemical conditions, but transition-metal complexes can promote reactions that occur beyond these circumstances. Transition-metal complexation with alkynes, alkenes, allenes, or dienes often alters the reactivity of those π-systems and facilitates access to diverse cycloaddition products. This Account describes our efforts toward the design of novel five-carbon synthons for use in rhodium-catalyzed (5 + n) cycloadditions, which include 3-acyloxy-1,4-enynes (ACEs) for (5 + 1) and (5 + 2) cycloadditions and 3-hydroxy-1,4-enynes (HYEs) for (5 + 1) cycloadditions. Furthermore, this Account includes relevant computational information, mechanistic insights, and applications of these cycloadditions in the synthesis of various highly substituted carbo- and heterocycles. The (5 + n) cycloaddition reactions presented herein share the following common mechanistic features: the 1,2-migration of an acyloxy group in propargyl esters or the ionization of a hydroxyl group in propargylic alcohols, oxidative cyclization to form a metallacycle, insertion of the one- or two-carbon component, and reductive elimination to yield the final product. In conjunction with a cationic rhodium catalyst, we used ACEs for the intramolecular (5 + 2) cycloaddition with tethered alkynes, alkenes, and allenes. In some cases, an electron-deficient phosphine ligand improved the reaction yields, especially when the ACE featured an internal alkyne. We also demonstrated that chirality could be efficiently transferred from a relatively simple starting material to a more complex bicyclic product. Products derived from ACEs with tethered alkenes and allenes contained one or more stereocenters, and high diastereoselectivity was achieved in most of these cases. For ACEs tethered to an allene, the reaction preferentially occurred at the internal alkene. We also switched the positions of the alkene and the alkyne in the 1,4-enyne of our original ACE to provide an inverted ACE variant, which produced products with complementary functionalities. After we successfully developed the Rh-catalyzed intramolecular (5 + 2) cycloaddition, we optimized conditions for the intermolecular version, which required a neutral rhodium catalyst and phosphine ligand. When a terminal alkyne was used as the two-carbon component, high regioselectivity was observed. While investigating the effect of esters on the rate of the intermolecular (5 + 2) cycloadditions, we determined that an electron-rich ester significantly accelerated the reaction. Subsequently, we demonstrated that (5 + 1) cycloadditions undergo this rate enhancement as well in the presence of an ester. Aside from ACEs, we synthesized HYEs in four steps from commercially available 2-aminobenzoic acid for use in the (5 + 1) cycloaddition. Mechanistically, HYEs were designed so that the aniline nitrogen could serve as the nucleophile and the -OH could serve as the leaving group. Using HYEs, we developed a novel method to make substituted carbazoles, dibenzofurans, and tricyclic compounds with a cyclohexadienone moiety. Although the occurrence of transition-metal-catalyzed acyloxy migrations has been known for decades, only recently has their synthetic value been realized. We hope our studies that employ readily available 1,4-enynes as the five-carbon components in (5 + n) cycloadditions can inspire the design of new two-component and multicomponent cycloadditions.
Collapse
Affiliation(s)
- Stephanie A. Blaszczyk
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel A. Glazier
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
43
|
Kumari P, Liu W, Wang C, Dai J, Wang M, Yang Q, Deng Y, Shao Z. Palladium‐Catalyzed Asymmetric [4+3]‐Cyclization Reaction of Fused 1‐Azadienes with Amino‐trimethylenemethanes: Highly Stereoselective Construction of Chiral Fused Azepines. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900430] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Prathibha Kumari
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of EducationSchool of Chemical Science and Technology, Yunnan University Kunming Yunnan 650091 China
| | - Weiwei Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of EducationSchool of Chemical Science and Technology, Yunnan University Kunming Yunnan 650091 China
| | - Cheng‐Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of EducationSchool of Chemical Science and Technology, Yunnan University Kunming Yunnan 650091 China
| | - Jun Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of EducationSchool of Chemical Science and Technology, Yunnan University Kunming Yunnan 650091 China
| | - Mei‐Xin Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of EducationSchool of Chemical Science and Technology, Yunnan University Kunming Yunnan 650091 China
| | - Qi‐Qiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of EducationSchool of Chemical Science and Technology, Yunnan University Kunming Yunnan 650091 China
| | - Yu‐Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of EducationSchool of Chemical Science and Technology, Yunnan University Kunming Yunnan 650091 China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of EducationSchool of Chemical Science and Technology, Yunnan University Kunming Yunnan 650091 China
| |
Collapse
|
44
|
Bulandr JJ, Grabowski JP, Law CM, Shaw JL, Goodell JR, Mitchell TA. Investigation of Transfer Group, Tether Proximity, and Alkene Substitution for Intramolecular Silyloxypyrone-Based [5 + 2] Cycloadditions. J Org Chem 2019; 84:10306-10320. [PMID: 31322900 DOI: 10.1021/acs.joc.9b01479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Systematic investigation of intramolecular silyloxypyrone-based [5 + 2] cycloadditions revealed three significant factors impacting conversion to cycloadduct: (1) the silyl transfer group has a substantial influence on the rate of reaction, and the robust t-butyldiphenylsilyl group was found to be more effective overall than the conventional t-butyldimethylsilyl group; (2) α,β-unsaturated esters were generally more reactive than terminal olefins and afforded appreciable quantity of cycloadduct even at room temperature; and (3) the proximity of the tether to the silyl transfer group revealed a critical alignment trend between the pyrone and the alkene. Taken together, these investigations provided insight regarding the steric and electronic parameters that impact the scope and limitation of these reactions.
Collapse
Affiliation(s)
- Jacob J Bulandr
- Department of Chemistry , Illinois State University , Campus Box 4160, Normal , Illinois 61790-4160 , United States
| | - Jacob P Grabowski
- Department of Chemistry , Illinois State University , Campus Box 4160, Normal , Illinois 61790-4160 , United States
| | - Chunyin M Law
- Department of Chemistry , Illinois State University , Campus Box 4160, Normal , Illinois 61790-4160 , United States
| | - Jessica L Shaw
- Department of Chemistry , Illinois State University , Campus Box 4160, Normal , Illinois 61790-4160 , United States
| | - John R Goodell
- Department of Chemistry , Illinois State University , Campus Box 4160, Normal , Illinois 61790-4160 , United States
| | - T Andrew Mitchell
- Department of Chemistry , Illinois State University , Campus Box 4160, Normal , Illinois 61790-4160 , United States
| |
Collapse
|
45
|
Bresnahan CG, Taylor-Edinbyrd KA, Cleveland AH, Malone JA, Dange NS, Milet A, Kumar R, Kartika R. Mechanistic Perspectives in the Regioselective Indole Addition to Unsymmetrical Silyloxyallyl Cations. J Org Chem 2019; 84:7166-7174. [PMID: 31050428 DOI: 10.1021/acs.joc.9b00853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our investigations on the reaction mechanism to account for regioselectivity on the addition of indoles to unsymmetrical silyloxyallyl cations are reported. Using both experimental and computational methods, we confirmed the significance of steric effects from the silyl ether group toward directing the inward approach of indoles, leading to nucleophilic attack at the less substituted electrophilic α'-carbon. The role of residual water toward accelerating the rate of reaction is established through stabilization of the participating silyloxyallyl cation.
Collapse
Affiliation(s)
- Caitlin G Bresnahan
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Kiara A Taylor-Edinbyrd
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Alexander H Cleveland
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Joshua A Malone
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Nitin S Dange
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Anne Milet
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS, UMR 5250 , F-38000 Grenoble , France
| | - Revati Kumar
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Rendy Kartika
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
46
|
|
47
|
Li C, Wang CS, Li TZ, Mei GJ, Shi F. Brønsted Acid-Catalyzed (4 + 3) Cyclization of N, N'-Cyclic Azomethine Imines with Isatoic Anhydrides. Org Lett 2019; 21:598-602. [PMID: 30645136 DOI: 10.1021/acs.orglett.8b03604] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Brønsted acid-catalyzed (4 + 3) cyclization of N, N'-cyclic azomethine imines with isatoic anhydrides has been discovered, which constructs seven-membered nitrogenous heterocyclic frameworks with overall high yields (up to 98% yield). This reaction represents a rarely reported (4 + 3) cyclization of N, N'-cyclic azomethine imines, which involves the reassembly of a C-N bond. In addition, this reaction has also accomplished the unprecedented (4 + 3) cyclization of isatoic anhydrides.
Collapse
Affiliation(s)
- Can Li
- School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou 221116 , China
| | - Cong-Shuai Wang
- School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou 221116 , China
| | - Tian-Zhen Li
- School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou 221116 , China
| | - Guang-Jian Mei
- School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou 221116 , China
| | - Feng Shi
- School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou 221116 , China
| |
Collapse
|
48
|
Ban Z, Cui X, Hu F, Lu G, Luo N, Huang G. Copper-mediated synthesis of quinazolin-4(3 H)-ones from N-(quinolin-8-yl)benzamide and amidine hydrochlorides. NEW J CHEM 2019. [DOI: 10.1039/c9nj02311a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient copper-mediated tandem C(sp2)–H amination to provide quinazolinones from N-(quinolin-8-yl)benzamide and amidine hydrochlorides has been developed.
Collapse
Affiliation(s)
- Zihui Ban
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| | - Xinfeng Cui
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| | - Fangpeng Hu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| | - Guoqiang Lu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| | - Nan Luo
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| | - Guosheng Huang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
49
|
Phan Thi Thanh N, Tone M, Inoue H, Fujisawa I, Iwasa S. Highly stereoselective intramolecular Buchner reaction of diazoacetamides catalyzed by a Ru(ii)–Pheox complex. Chem Commun (Camb) 2019; 55:13398-13401. [DOI: 10.1039/c9cc06889a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work reports the first efficient enantioselective intramolecular Buchner reaction of diazoacetamides.
Collapse
Affiliation(s)
- Nga Phan Thi Thanh
- Department of Applied Chemistry and Life Science
- Toyohashi University of Technology
- Toyohashi
- Japan
| | - Masaya Tone
- Department of Applied Chemistry and Life Science
- Toyohashi University of Technology
- Toyohashi
- Japan
| | - Hayato Inoue
- Department of Applied Chemistry and Life Science
- Toyohashi University of Technology
- Toyohashi
- Japan
| | - Ikuhide Fujisawa
- Department of Applied Chemistry and Life Science
- Toyohashi University of Technology
- Toyohashi
- Japan
| | - Seiji Iwasa
- Department of Applied Chemistry and Life Science
- Toyohashi University of Technology
- Toyohashi
- Japan
| |
Collapse
|
50
|
Wei L, Shen C, Hu YZ, Tao HY, Wang CJ. Enantioselective synthesis of multi-nitrogen-containing heterocycles using azoalkenes as key intermediates. Chem Commun (Camb) 2019; 55:6672-6684. [PMID: 31134230 DOI: 10.1039/c9cc02371b] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chiral multi-nitrogen-containing heterocycles, such as pyrazole, imidazole and pyridazine, are widely found in naturally occurring organic compounds and pharmaceuticals, and hence, their stereoselective and efficient synthesis is an important issue in organic synthesis. Out of the variety of methods that have been developed over the past century, the catalytic asymmetric cyclization and cycloaddition reactions are recognized as the most synthetically useful strategies due to their step-, atom- and redox-economic nature. In particular, the recently developed annulation reactions using azoalkenes as key intermediates show their great ability to construct diverse types of multi-nitrogen-containing heterocycles. In this feature article, we critically analyse the strategic development and the efficient transformation of azoalkenes to chiral heterocycles and α-functionalized ketone derivatives since 2010. The plausible mechanism for each reaction model is also discussed.
Collapse
Affiliation(s)
- Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | |
Collapse
|