• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4608411)   Today's Articles (7)   Subscriber (49375)
For: Leopoldini M, Russo N, Toscano M. The Preferred Reaction Path for the Oxidation of Methanol by PQQ-Containing Methanol Dehydrogenase: Addition–Elimination versus Hydride-Transfer Mechanism. Chemistry 2007;13:2109-17. [PMID: 17149777 DOI: 10.1002/chem.200601123] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Number Cited by Other Article(s)
1
Phi MT, Singer H, Zäh F, Haisch C, Schneider S, Op den Camp HJM, Daumann LJ. Assessing Lanthanide-Dependent Methanol Dehydrogenase Activity: The Assay Matters. Chembiochem 2024;25:e202300811. [PMID: 38269599 DOI: 10.1002/cbic.202300811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Indexed: 01/26/2024]
2
Riziotis IG, Ribeiro AJM, Borkakoti N, Thornton JM. The 3D Modules of Enzyme Catalysis: Deconstructing Active Sites into Distinct Functional Entities. J Mol Biol 2023;435:168254. [PMID: 37652131 DOI: 10.1016/j.jmb.2023.168254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
3
Le TK, Lee YJ, Han GH, Yeom SJ. Methanol Dehydrogenases as a Key Biocatalysts for Synthetic Methylotrophy. Front Bioeng Biotechnol 2022;9:787791. [PMID: 35004648 PMCID: PMC8741260 DOI: 10.3389/fbioe.2021.787791] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022]  Open
4
Vargo NP, Harland JB, Musselman BW, Lehnert N, Ertem MZ, Robinson JR. Calcium‐Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
5
Vargo NP, Harland JB, Musselman BW, Lehnert N, Ertem MZ, Robinson JR. Calcium-Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores. Angew Chem Int Ed Engl 2021;60:19836-19842. [PMID: 34101958 DOI: 10.1002/anie.202105421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Indexed: 01/27/2023]
6
Chan SI, Chuankhayan P, Reddy Nareddy PK, Tsai IK, Tsai YF, Chen KHC, Yu SSF, Chen CJ. Mechanism of Pyrroloquinoline Quinone-Dependent Hydride Transfer Chemistry from Spectroscopic and High-Resolution X-ray Structural Studies of the Methanol Dehydrogenase from Methylococcus capsulatus (Bath). J Am Chem Soc 2021;143:3359-3372. [PMID: 33629832 DOI: 10.1021/jacs.0c11414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
7
Sarmiento-Pavía PD, Sosa-Torres ME. Bioinorganic insights of the PQQ-dependent alcohol dehydrogenases. J Biol Inorg Chem 2021;26:177-203. [PMID: 33606117 DOI: 10.1007/s00775-021-01852-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
8
The Effects of the Metal Ion Substitution into the Active Site of Metalloenzymes: A Theoretical Insight on Some Selected Cases. Catalysts 2020. [DOI: 10.3390/catal10091038] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]  Open
9
Prejanò M, Russo N, Marino T. How Lanthanide Ions Affect the Addition–Elimination Step of Methanol Dehydrogenases. Chemistry 2020;26:11334-11339. [DOI: 10.1002/chem.202001855] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/04/2020] [Indexed: 01/15/2023]
10
Daumann LJ. Essential and Ubiquitous: The Emergence of Lanthanide Metallobiochemistry. Angew Chem Int Ed Engl 2019;58:12795-12802. [DOI: 10.1002/anie.201904090] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 11/10/2022]
11
Daumann LJ. Essenziell und weitverbreitet: Lanthanoid‐Metalloproteine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
12
Kalimuthu P, Daumann LJ, Pol A, Op den Camp HJM, Bernhardt PV. Electrocatalysis of a Europium‐Dependent Bacterial Methanol Dehydrogenase with Its Physiological Electron‐Acceptor Cytochrome  c GJ. Chemistry 2019;25:8760-8768. [DOI: 10.1002/chem.201900525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/21/2019] [Indexed: 01/27/2023]
13
Marino T, Prejanò M, Russo N. How Metal Coordination in the Ca-, Ce-, and Eu-Containing Methanol Dehydrogenase Enzymes Can Influence the Catalysis: A Theoretical Point of View. TRANSITION METALS IN COORDINATION ENVIRONMENTS 2019. [DOI: 10.1007/978-3-030-11714-6_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
14
Decker H, Solem E, Tuczek F. Are glutamate and asparagine necessary for tyrosinase activity of type-3 copper proteins? Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
15
Lumpe H, Pol A, Op den Camp HJM, Daumann LJ. Impact of the lanthanide contraction on the activity of a lanthanide-dependent methanol dehydrogenase - a kinetic and DFT study. Dalton Trans 2018;47:10463-10472. [PMID: 30020281 PMCID: PMC6085770 DOI: 10.1039/c8dt01238e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/14/2018] [Indexed: 01/15/2023]
16
Jahn B, Pol A, Lumpe H, Barends TRM, Dietl A, Hogendoorn C, Op den Camp HJM, Daumann LJ. Similar but Not the Same: First Kinetic and Structural Analyses of a Methanol Dehydrogenase Containing a Europium Ion in the Active Site. Chembiochem 2018;19:1147-1153. [PMID: 29524328 PMCID: PMC6100108 DOI: 10.1002/cbic.201800130] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 01/23/2023]
17
McSkimming A, Cheisson T, Carroll PJ, Schelter EJ. Functional Synthetic Model for the Lanthanide-Dependent Quinoid Alcohol Dehydrogenase Active Site. J Am Chem Soc 2018;140:1223-1226. [DOI: 10.1021/jacs.7b12318] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
18
Prejanò M, Marino T, Russo N. How Can Methanol Dehydrogenase from Methylacidiphilum fumariolicum Work with the Alien CeIII Ion in the Active Center? A Theoretical Study. Chemistry 2017;23:8652-8657. [DOI: 10.1002/chem.201700381] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Indexed: 01/27/2023]
19
Dorfner WL, Carroll PJ, Schelter EJ. Substituted Quinoline Quinones as Surrogates for the PQQ Cofactor: An Electrochemical and Computational Study. Org Lett 2015;17:1850-3. [DOI: 10.1021/acs.orglett.5b00486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
20
Uchida W, Wakabayashi M, Ikemoto K, Nakano M, Ohtani H, Nakamura S. Mechanism of glycine oxidation catalyzed by pyrroloquinoline quinone in aqueous solution. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2014.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
21
Mitome H, Ishizuka T, Shiota Y, Yoshizawa K, Kojima T. Controlling the redox properties of a pyrroloquinolinequinone (PQQ) derivative in a ruthenium(ii) coordination sphere. Dalton Trans 2015;44:3151-8. [DOI: 10.1039/c4dt03358b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
22
Bogart JA, Lewis AJ, Schelter EJ. DFT study of the active site of the XoxF-type natural, cerium-dependent methanol dehydrogenase enzyme. Chemistry 2014;21:1743-8. [PMID: 25421364 DOI: 10.1002/chem.201405159] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 11/07/2022]
23
Gvozdev AR, Tukhvatullin IA, Gvozdev RI. Quinone-dependent alcohol dehydrogenases and FAD-dependent alcohol oxidases. BIOCHEMISTRY (MOSCOW) 2013;77:843-56. [PMID: 22860906 DOI: 10.1134/s0006297912080056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
24
Mitome H, Ishizuka T, Shiota Y, Yoshizawa K, Kojima T. Heteronuclear RuIIAgI Complexes Having a Pyrroloquinolinequinone Derivative as a Bridging Ligand. Inorg Chem 2013;52:2274-6. [DOI: 10.1021/ic302617b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
25
Mangiatordi GF, Brémond E, Adamo C. DFT and Proton Transfer Reactions: A Benchmark Study on Structure and Kinetics. J Chem Theory Comput 2012;8:3082-8. [PMID: 26605719 DOI: 10.1021/ct300338y] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
26
Amata O, Marino T, Russo N, Toscano M. A Proposal for Mitochondrial Processing Peptidase Catalytic Mechanism. J Am Chem Soc 2011;133:17824-31. [DOI: 10.1021/ja207065v] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
27
Alberto ME, Leopoldini M, Russo N. Can Human Prolidase Enzyme Use Different Metals for Full Catalytic Activity? Inorg Chem 2011;50:3394-403. [DOI: 10.1021/ic1022517] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
28
Leopoldini M, Malaj N, Toscano M, Sindona G, Russo N. On the inhibitor effects of bergamot juice flavonoids binding to the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010;58:10768-10773. [PMID: 20843083 DOI: 10.1021/jf102576j] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
29
Leopoldini M, Russo N, Toscano M. Favored Reaction Mechanism of Calcium-Dependent Phospholipase A2. Insights from Density Functional Exploration. J Phys Chem B 2010;114:11584-93. [DOI: 10.1021/jp1003819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
30
Amata O, Marino T, Russo N, Toscano M. Human insulin-degrading enzyme working mechanism. J Am Chem Soc 2010;131:14804-11. [PMID: 19785409 DOI: 10.1021/ja9037142] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
31
Idupulapati NB, Mainardi DS. Quantum Chemical Modeling of Methanol Oxidation Mechanisms by Methanol Dehydrogenase Enzyme: Effect of Substitution of Calcium by Barium in the Active Site. J Phys Chem A 2010;114:1887-96. [DOI: 10.1021/jp9083025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
32
Leopoldini M, Russo N, Toscano M. Determination of the Catalytic Pathway of a Manganese Arginase Enzyme Through Density Functional Investigation. Chemistry 2009;15:8026-8036. [DOI: 10.1002/chem.200802252] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
33
Idupulapati N, Mainardi D. A DMol3study of the methanol addition–elimination oxidation mechanism by methanol dehydrogenase enzyme. MOLECULAR SIMULATION 2008. [DOI: 10.1080/08927020802235656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
34
Leopoldini M, Chiodo S, Toscano M, Russo N. Reaction Mechanism of Molybdoenzyme Formate Dehydrogenase. Chemistry 2008;14:8674-81. [DOI: 10.1002/chem.200800906] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
35
Leopoldini M, Marino T, Toscano M. Theoretical investigation of the catalytic mechanism of the protein arginine deiminase 4 enzyme. Theor Chem Acc 2008. [DOI: 10.1007/s00214-008-0433-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
36
Chen SL, Fang WH, Himo F. Technical aspects of quantum chemical modeling of enzymatic reactions: the case of phosphotriesterase. Theor Chem Acc 2008. [DOI: 10.1007/s00214-008-0430-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA