1
|
Stolc V, Karhanek M, Freund F, Griko Y, Loftus DJ, Ohayon MM. Metabolic stress in space: ROS-induced mutations in mice hint at a new path to cancer. Redox Biol 2024; 78:103398. [PMID: 39586121 PMCID: PMC11625351 DOI: 10.1016/j.redox.2024.103398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
Long-duration spaceflight beyond Earth's magnetosphere poses serious health risks, including muscle atrophy, bone loss, liver and kidney damage, and the Spaceflight-Associated Neuro-ocular Syndrome (SANS). RNA-seq of mice aboard the International Space Station (ISS) for 37 days revealed extraordinary hypermutation in tissue-specific genes, with guanine base conversion predominating, potentially contributing to spaceflight-associated health risks. Our results suggest that the genome-wide accelerated mutation that we measured, seemingly independent of radiation dose, was induced by oxidative damage from higher atmospheric carbon dioxide (CO2) levels and increased reactive oxygen species (ROS) on the ISS. This accelerated mutation, faster via RNA transcription than replication and more numerous than by radiation alone, unveils novel hotspots in the mammalian proteome. Notably, these hotspots correlate with commonly mutated genes across various human cancers, highlighting the ISS as a crucial platform for studying accelerated mutation, genome instability, and the induction of disease-causing mutations in model organisms. Our results suggest that metabolic processes can contribute to somatic mutation, and thus may play a role in the development of cancer. A metabolic link to genetic instability potentially has far-reaching implications for various diseases, with implications for human health on Earth and in space.
Collapse
Affiliation(s)
- Viktor Stolc
- NASA Ames Research Center, Moffett Field, CA, 94035, USA.
| | - Miloslav Karhanek
- Biomedical Research Center, Slovak Academy of Sciences, 845 05, Bratislava, Slovakia
| | | | - Yuri Griko
- NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - David J Loftus
- NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Maurice M Ohayon
- Stanford University, School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Cao H, Xiong SF, Dong LL, Dai ZT. Study on the Mechanism of Lipid Peroxidation Induced by Carbonate Radicals. Molecules 2024; 29:1125. [PMID: 38474637 DOI: 10.3390/molecules29051125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Based on the reported research, hydroxyl radicals can be rapidly transformed into carbonate radicals in the carbonate-bicarbonate buffering system in vivo. Many of the processes considered to be initiated by hydroxyl radicals may be caused by carbonate radicals, which indicates that lipid peroxidation initiated by hydroxyl radicals can also be caused by carbonate radicals. To date, theoretical research on reactions of hydrogen abstraction from and radical addition to polyunsaturated fatty acids (PUFAs) of carbonate radicals has not been carried out systematically. This paper employs (3Z,6Z)-nona-3,6-diene (NDE) as a model for polyunsaturated fatty acids (PUFAs). Density functional theory (DFT) with the CAM-B3LYP method at the 6-311+g(d,p) level was used to calculate the differences in reactivity of carbonate radicals abstracting hydrogen from different positions of NDE and their addition to the double bonds of NDE under lipid solvent conditions with a dielectric constant of 4.0 (CPCM model). Grimme's empirical dispersion correction was taken into account through the D3 scheme. The energy barrier, reaction rate constants, internal energy, enthalpy and Gibbs free energy changes in these reactions were calculated With zero-point vibrational energy (ZPVE) corrections. The results indicated that carbonate radicals initiate lipid peroxidation primarily through hydrogen abstraction from diallyl carbon atoms. The reaction of hydrogen abstraction from diallyl carbon atoms exhibits the highest reaction rate, with a reaction rate constant approximately 43-fold greater than the second-ranked hydrogen abstraction from allyl carbon atoms. This process has the lowest energy barrier, internal energy, enthalpy, and Gibbs free energy changes, indicating that it is also the most spontaneous process.
Collapse
Affiliation(s)
- Heng Cao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sheng-Feng Xiong
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li-Long Dong
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050031, China
| | - Zhou-Tong Dai
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Sharma M, Anand P, Padwad YS, Dogra V, Acharya V. DNA damage response proteins synergistically affect the cancer prognosis and resistance. Free Radic Biol Med 2022; 178:174-188. [PMID: 34848370 DOI: 10.1016/j.freeradbiomed.2021.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
Amplification of oxidative stress can be utilized as a strategy to attenuate cancer progression by instigating apoptosis. However, the duration of positive response to such therapies is limited, as cancer cells eventually develop resistance. The underlying molecular mechanisms of cancer cells to escape apoptosis under oxidative stress is unknown. Employing big data, and its integration with transcriptome, proteome and network analysis in six cancer types revealed system-level interactions between DNA damage response (DDR) proteins, including; DNA damage repair, cell cycle checkpoints and anti-apoptotic proteins. Cancer system biology is used to elucidate mechanisms for cancer progression, but networks defining mechanisms causing resistance is less explored. Using system biology, we identified DDR hubs between G1-S and M phases that were associated with bad prognosis. The increased expression of DDR network was involved in resistance under high oxidative stress. We validated our findings by combining H2O2 induced oxidative stress and DDR inhibitors in human lung cancer cells to conclude the necessity of targeting a 'disease-causing network'. Collectively, our work provides insights toward designing strategies for network pharmacology to combat resistance in cancer research.
Collapse
Affiliation(s)
- Meetal Sharma
- Functional Genomics and Complex System Lab, Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prince Anand
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yogendra S Padwad
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vivek Dogra
- Plant Molecular Biology and Stress Signalling Lab, Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vishal Acharya
- Functional Genomics and Complex System Lab, Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Carrera-Juliá S, Moreno ML, Barrios C, de la Rubia Ortí JE, Drehmer E. Antioxidant Alternatives in the Treatment of Amyotrophic Lateral Sclerosis: A Comprehensive Review. Front Physiol 2020; 11:63. [PMID: 32116773 PMCID: PMC7016185 DOI: 10.3389/fphys.2020.00063] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that produces a selective loss of the motor neurons of the spinal cord, brain stem and motor cortex. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain has been shown to be a factor that contributes to neurodegeneration and plays a potential role in the pathogenesis of ALS. The regions of the central nervous system affected have high levels of reactive oxygen species (ROS) and reduced antioxidant defenses. Scientific studies propose treatment with antioxidants to combat the characteristic OS and the regeneration of nicotinamide adenine dinucleotide (NAD+) levels by the use of precursors. This review examines the possible roles of nicotinamide riboside and pterostilbene as therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Sandra Carrera-Juliá
- Doctoral Degree’s School, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
- Department of Nutrition and Dietetics, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Mari Luz Moreno
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Carlos Barrios
- Institute for Research on Musculoskeletal Disorders, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | | | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| |
Collapse
|
5
|
Hebert SP, Schlegel HB. Computational Study of the Oxidation of Guanine To Form 5-Carboxyamido-5-formamido-2-iminohydantoin (2Ih). Chem Res Toxicol 2019; 32:2295-2304. [PMID: 31571479 DOI: 10.1021/acs.chemrestox.9b00304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative damage to DNA leads to a number of two-electron oxidation products of guanine such as 8-oxo-7,8-dihydroguanine (8oxoG). 5-Carboxyamido-5-formamido-2-iminohydantoin (2Ih) is another two-electron oxidation product that forms in competition with 8oxoG. The pathways for the formation of 2Ih have been studied by density functional theory using the ωB97XD functional with the 6-31+G(d,p) basis set and SMD implicit water solvation plus a small number of explicit water molecules positioned to help stabilize charged species and facilitate reaction steps. For oxidative conditions that produce hydroxyl radical, such as Fenton chemistry, hydroxy radical can add at C4, C5, or C8. Addition at C4 or C5 followed by loss of H2O produces guanine radical. Guanine radical can also be produced directly by oxidation of guanine by reactive oxygen species (ROS). A C5-OH intermediate can be formed by addition of superoxide to C5 of guanine radical followed by reduction. Alternatively, the C5-OH intermediate can be formed by hydroxy radical addition at C5 and oxidation by 3O2. The competition between oxidative and reductive pathways depends on the reaction conditions. Acyl migration of the C5-OH intermediate yields reduced spiroiminodihydantoin (Spred). Subsequent water addition at C8 of Spred and N7-C8 ring opening produces 2Ih. Hydroxy radical addition at C8 can lead to a number of products. Oxidation and tautomerization produces 8oxoG. Alternatively, addition of superoxide at C5 and reduction results in a C5, C8 dihydroxy intermediate. For this species, the low energy pathway to 2Ih is N7-C8 ring opening followed by acyl migration. Ring opening occurs more easily at C8-N9 but leads to a higher energy analogue of 2Ih. Thus, the dominant pathway for the production of 2Ih depends on the nature of the reactive oxygen species and on the presence or absence of reducing agents.
Collapse
Affiliation(s)
- Sebastien P Hebert
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - H Bernhard Schlegel
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
6
|
Lee YA, Cho HY, Kim SK. Neighboring base sequence effect on DNA damage. J Biomol Struct Dyn 2019; 38:3188-3195. [PMID: 31432766 DOI: 10.1080/07391102.2019.1659186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Guanine is the most strongly oxidized base in DNA; generation of a guanine radical cation as an intermediate in an oxidation reaction leads to migration through a resulting cationic hole in the DNA π-stack until it is trapped by irreversible reaction with water or other free radicals. In the case of normal sequences, the primary position of Guanine oxidations by one-electron oxidants such as carbonate radical anions, BPT(7,8,9,10-tetrahydroxytetrahydrobenzo[a]pyrene), and riboflavin are 5'-G in GG doublets and the central G in a GGG triplet. According to results, the properties of guanine oxidation on abasic site containing sequences are independent from the position of AP(apurinic/apyrimidinic) site in the presence of carbonate radical anions under a short irradiation time, although this radical is exposed to solvent by the existence of an abasic site. The lack of abasic site effect on guanine oxidative damage by the carbonate radical may be due to a sequence-independent property of the initial electron transfer rate in the hole injection step, or may relate to an electron transfer mechanism with large reorganization energy dependency. Consequently, the carbonate radical anions may easily migrate to another single G in the charge re-distribution step. Meanwhile, there is a strong dependency on the presence of an AP(apurinic/apyrimidinic) site in the cleavage patterns of guanine oxidations by physically large oxidizing agents, such as BPT(7,8,9,10-tetrahydroxytetrahydrobenzo[a]pyrene) and riboflavin. These radicals show strong AP(apurinic/apyrimidinic) site dependency and clear G-site selectivity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Young-Ae Lee
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeong-Buk, Republic of Korea
| | - Ha Young Cho
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeong-Buk, Republic of Korea
| | - Seog K Kim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeong-Buk, Republic of Korea
| |
Collapse
|
7
|
Hebert SP, Schlegel HB. Computational Study of the pH-Dependent Competition between Carbonate and Thymine Addition to the Guanine Radical. Chem Res Toxicol 2019; 32:195-210. [PMID: 30592213 DOI: 10.1021/acs.chemrestox.8b00302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When oligonucleotides are oxidized by carbonate radical, thymine and carbonate can add to guanine radical, yielding either a guanine-thymine cross-link product (G∧T) or 8-oxo-7,8-dehydroguanine (8oxoG) and its further oxidation products such as spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh). The ratio of thymine addition to carbonate addition depends strongly on the pH. Details of the mechanism have been explored by density functional calculations using the ωB97XD/6-31+G(d,p) level of theory with the SMD implicit solvation method, augmented with a few explicit waters. Free energies of intermediates and transition states in aqueous solution have been calculated along the pathways for addition of thymine, CO32-/HCO3- and carbonate radical to guanine radical. The pH dependence was examined by using appropriate explicit proton donors/acceptors as computational models for buffers at pH 2.5, 7, and 10. Deprotonation of thymine is required for nucleophilic addition at C8 of guanine radical, and thus is favored at higher pH. The barrier for carbonate radical addition is lower than for bicarbonate or carbonate dianion addition; however, for low concentrations of carbonate radical, the reaction may proceed by addition of bicarbonate/carbonate dianion to guanine radical. Thymine and bicarbonate/carbonate dianion addition are followed by oxidation by O2, loss of a proton from C8 and decarboxylation of the carbonate adduct. At pH 2.5, guanine radical cation can be formed by oxidization with sulfate radical. Water addition to guanine radical cation is the preferred path for forming 8oxoG at pH 2.5.
Collapse
Affiliation(s)
- Sebastien P Hebert
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - H Bernhard Schlegel
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
8
|
Mizrahi A, Meyerstein D. Plausible roles of carbonate in catalytic water oxidation. ADVANCES IN INORGANIC CHEMISTRY 2019. [DOI: 10.1016/bs.adioch.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Mizrahi A, Maimon E, Cohen H, Zilbermann I. Reactions of carbonate radical anion with amino-carboxylate complexes of manganese(II) and iron(III). J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1496242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Amir Mizrahi
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Eric Maimon
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Haim Cohen
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Chemical Sciences Department and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Ariel University, Ariel, Israel
| | - Israel Zilbermann
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
10
|
Cadet J, Wagner JR. Radiation-induced damage to cellular DNA: Chemical nature and mechanisms of lesion formation. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Fong CW. Platinum anti-cancer drugs: Free radical mechanism of Pt-DNA adduct formation and anti-neoplastic effect. Free Radic Biol Med 2016; 95:216-29. [PMID: 27012421 DOI: 10.1016/j.freeradbiomed.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/10/2016] [Accepted: 03/19/2016] [Indexed: 11/29/2022]
Abstract
The literature on the anti-neoplastic effects of Pt drugs provides substantial evidence that free radical may be involved in the formation of Pt-DNA adducts and other cytotoxic effects. The conditions specific to cancerous tumours are more conducive to free radical mechanisms than the commonly accepted hydrolysis nucleophilic-electrophilic mechanism of Pt-DNA adduct formation. Molecular orbital studies of the adiabatic attachment of hydrated electrons to Pt drugs reveal that there is a significant lengthening of the Pt-X bond (where X is Cl, O in cisplatin, carboplatin and some pyrophosphate-Pt drugs but not oxaliplatin) in the anion radical species. This observation is consistent with a dissociative electron transfer (DET) mechanism for the formation of Pt-DNA adducts. A DET reaction mechanism is proposed for the reaction of Pt drugs with guanine which involves a quasi-inner sphere 2 electron transfer process involving a transient intermediate 5 co-ordinated activated anion radical species {R2Pt---Cl(G)(Cl)•}*(-) (where R is an ammine group, and G is guanine) and the complex has an elongated Pt---Cl (or Pt---O) bond. A DET mechanism is also proposed when Pt drugs are activated by reaction with free radicals such as HO•, CO3•(-), O2•(-) but do not react with DNA bases to form adducts, but form Pt-protein adducts with proteins such ezrin, FAS, DR5, TNFR1 etc. The DET mechanism may not occur with oxaliplatin.
Collapse
|
12
|
Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol 2014; 91:140-55. [PMID: 25327445 DOI: 10.1111/php.12368] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
Abstract
This review article focuses on a critical survey of the main available information on the UVB and UVA oxidative reactions to cellular DNA as the result of direct interactions of UV photons, photosensitized pathways and biochemical responses including inflammation and bystander effects. UVA radiation appears to be much more efficient than UVB in inducing oxidatively generated damage to the bases and 2-deoxyribose moieties of DNA in isolated cells and skin. The UVA-induced generation of 8-oxo-7,8-dihydroguanine is mostly rationalized in terms of selective guanine oxidation by singlet oxygen generated through type II photosensitization mechanism. In addition, hydroxyl radical whose formation may be accounted for by metal-catalyzed Haber-Weiss reactions subsequent to the initial generation of superoxide anion radical contributes in a minor way to the DNA degradation. This leads to the formation of both oxidized purine and pyrimidine bases together with DNA single-strand breaks at the exclusion, however, of direct double-strand breaks. No evidence has been provided so far for the implication of delayed oxidative degradation pathways of cellular DNA. In that respect putative characteristic UVA-induced DNA damage could include single and more complex lesions arising from one-electron oxidation of the guanine base together with aldehyde adducts to amino-substituted nucleobases.
Collapse
Affiliation(s)
- Jean Cadet
- University Grenoble Alpes, INAC, Grenoble, France; CEA, INAC, Grenoble, France; Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | |
Collapse
|
13
|
Ming X, Matter B, Song M, Veliath E, Shanley R, Jones R, Tretyakova N. Mapping structurally defined guanine oxidation products along DNA duplexes: influence of local sequence context and endogenous cytosine methylation. J Am Chem Soc 2014; 136:4223-35. [PMID: 24571128 PMCID: PMC3985951 DOI: 10.1021/ja411636j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Indexed: 02/07/2023]
Abstract
DNA oxidation by reactive oxygen species is nonrandom, potentially leading to accumulation of nucleobase damage and mutations at specific sites within the genome. We now present the first quantitative data for sequence-dependent formation of structurally defined oxidative nucleobase adducts along p53 gene-derived DNA duplexes using a novel isotope labeling-based approach. Our results reveal that local nucleobase sequence context differentially alters the yields of 2,2,4-triamino-2H-oxal-5-one (Z) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG) in double stranded DNA. While both lesions are overproduced within endogenously methylated (Me)CG dinucleotides and at 5' Gs in runs of several guanines, the formation of Z (but not OG) is strongly preferred at solvent-exposed guanine nucleobases at duplex ends. Targeted oxidation of (Me)CG sequences may be caused by a lowered ionization potential of guanine bases paired with (Me)C and the preferential intercalation of riboflavin photosensitizer adjacent to (Me)C:G base pairs. Importantly, some of the most frequently oxidized positions coincide with the known p53 lung cancer mutational "hotspots" at codons 245 (GGC), 248 (CGG), and 158 (CGC) respectively, supporting a possible role of oxidative degradation of DNA in the initiation of lung cancer.
Collapse
Affiliation(s)
- Xun Ming
- Department of Medicinal Chemistry and the Masonic Cancer Center and Biostatistics and
Bioinformatics Core at the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brock Matter
- Department of Medicinal Chemistry and the Masonic Cancer Center and Biostatistics and
Bioinformatics Core at the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew Song
- Department of Medicinal Chemistry and the Masonic Cancer Center and Biostatistics and
Bioinformatics Core at the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth Veliath
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Ryan Shanley
- Department of Medicinal Chemistry and the Masonic Cancer Center and Biostatistics and
Bioinformatics Core at the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Roger Jones
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and the Masonic Cancer Center and Biostatistics and
Bioinformatics Core at the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Formation of spiroiminodihydantoin due to the reaction between 8-oxoguanine and carbonate radical anion: A quantum computational study. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2013.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
D’Amico E, Factor-Litvak P, Santella RM, Mitsumoto H. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic Biol Med 2013; 65:509-527. [PMID: 23797033 PMCID: PMC3859834 DOI: 10.1016/j.freeradbiomed.2013.06.029] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 06/14/2013] [Accepted: 06/14/2013] [Indexed: 12/12/2022]
Abstract
Sporadic amyotrophic lateral sclerosis (ALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/antioxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting that multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly supports the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis.
Collapse
Affiliation(s)
- Emanuele D’Amico
- Eleanor and Lou Gehrig MDA/ALS Research Center, The Neurological Institute of New York, Columbia University Medical Center, 710 West 168th Street (NI-9), New York, NY 10032, ;
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032,
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032,
| | - Hiroshi Mitsumoto
- Eleanor and Lou Gehrig MDA/ALS Research Center, The Neurological Institute of New York, Columbia University Medical Center, 710 West 168th Street (NI-9), New York, NY 10032
| |
Collapse
|
16
|
Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic Biol Med 2013; 65:1174-1194. [PMID: 24036104 DOI: 10.1016/j.freeradbiomed.2013.09.001] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 02/07/2023]
Abstract
Production of minute concentrations of superoxide (O2(*-)) and nitrogen monoxide (nitric oxide, NO*) plays important roles in several aspects of cellular signaling and metabolic regulation. However, in an inflammatory environment, the concentrations of these radicals can drastically increase and the antioxidant defenses may become overwhelmed. Thus, biological damage may occur owing to redox imbalance-a condition called oxidative and/or nitrosative stress. A complex interplay exists between iron metabolism, O2(*-), hydrogen peroxide (H2O2), and NO*. Iron is involved in both the formation and the scavenging of these species. Iron deficiency (anemia) (ID(A)) is associated with oxidative stress, but its role in the induction of nitrosative stress is largely unclear. Moreover, oral as well as intravenous (iv) iron preparations used for the treatment of ID(A) may also induce oxidative and/or nitrosative stress. Oral administration of ferrous salts may lead to high transferrin saturation levels and, thus, formation of non-transferrin-bound iron, a potentially toxic form of iron with a propensity to induce oxidative stress. One of the factors that determine the likelihood of oxidative and nitrosative stress induced upon administration of an iv iron complex is the amount of labile (or weakly-bound) iron present in the complex. Stable dextran-based iron complexes used for iv therapy, although they contain only negligible amounts of labile iron, can induce oxidative and/or nitrosative stress through so far unknown mechanisms. In this review, after summarizing the main features of iron metabolism and its complex interplay with O2(*-), H2O2, NO*, and other more reactive compounds derived from these species, the potential of various iron therapies to induce oxidative and nitrosative stress is discussed and possible underlying mechanisms are proposed. Understanding the mechanisms, by which various iron formulations may induce oxidative and nitrosative stress, will help us develop better tolerated and more efficient therapies for various dysfunctions of iron metabolism.
Collapse
Affiliation(s)
- Taija S Koskenkorva-Frank
- Chemical and Preclinical Research and Development, Vifor (International) Ltd., CH-9001 St. Gallen, Switzerland
| | - Günter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Willem H Koppenol
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Susanna Burckhardt
- Chemical and Preclinical Research and Development, Vifor (International) Ltd., CH-9001 St. Gallen, Switzerland; Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Cadet J, Wagner JR. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 764-765:18-35. [PMID: 24045206 DOI: 10.1016/j.mrgentox.2013.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022]
Abstract
5-Methylcytosine and methylated histones have been considered for a long time as stable epigenetic marks of chromatin involved in gene regulation. This concept has been recently revisited with the detection of large amounts of 5-hydroxymethylcytosine, now considered as the sixth DNA base, in mouse embryonic stem cells, Purkinje neurons and brain tissues. The dioxygenases that belong to the ten eleven translocation (TET) oxygenase family have been shown to initiate the formation of this methyl oxidation product of 5-methylcytosine that is also generated although far less efficiently by radical reactions involving hydroxyl radical and one-electron oxidants. It was found as additional striking data that iterative TET-mediated oxidation of 5-hydroxymethylcytosine gives rise to 5-formylcytosine and 5-carboxylcytosine. This survey focuses on chemical and biochemical aspects of the enzymatic oxidation reactions of 5-methylcytosine that are likely to be involved in active demethylation pathways through the implication of enzymatic deamination of 5-methylcytosine oxidation products and/or several base excision repair enzymes. The high biological relevance of the latter modified bases explains why major efforts have been devoted to the design of a broad range of assays aimed at measuring globally or at the single base resolution, 5-hydroxymethylcytosine and the two other oxidation products in the DNA of cells and tissues. Another critical issue that is addressed in this review article deals with the assessment of the possible role of 5-methylcytosine oxidation products, when present in elevated amounts in cellular DNA, in terms of mutagenesis and interference with key cellular enzymes including DNA and RNA polymerases.
Collapse
Affiliation(s)
- Jean Cadet
- Direction des Sciences de la Matière, Institut Nanosciences et Cryogénie, CEA/Grenoble, 38054 Grenoble, France; Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec JIH 5N4, Canada.
| | - J Richard Wagner
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec JIH 5N4, Canada.
| |
Collapse
|
18
|
Jena NR, Mishra PC. Is FapyG Mutagenic?: Evidence from the DFT Study. Chemphyschem 2013; 14:3263-70. [DOI: 10.1002/cphc.201300535] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/10/2013] [Indexed: 01/25/2023]
Affiliation(s)
- Nihar Ranjan Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design and Manufacturing, Khamaria, Jabalpur‐482005 (India)
- Current address School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane QLD 4072 (Australia)
| | | |
Collapse
|
19
|
Fleming AM, Burrows CJ. G-quadruplex folds of the human telomere sequence alter the site reactivity and reaction pathway of guanine oxidation compared to duplex DNA. Chem Res Toxicol 2013; 26:593-607. [PMID: 23438298 DOI: 10.1021/tx400028y] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Telomere shortening occurs during oxidative and inflammatory stress with guanine (G) as the major site of damage. In this work, a comprehensive profile of the sites of oxidation and structures of products observed from G-quadruplex and duplex structures of the human telomere sequence was studied in the G-quadruplex folds (hybrid (K(+)), basket (Na(+)), and propeller (K(+) + 50% CH3CN)) resulting from the sequence 5'-(TAGGGT)4T-3' and in an appropriate duplex containing one telomere repeat. Oxidations with four oxidant systems consisting of riboflavin photosensitization, carbonate radical generation, singlet oxygen, and the copper Fenton-like reaction were analyzed under conditions of low product conversion to determine relative reactivity. The one-electron oxidants damaged the 5'-G in G-quadruplexes leading to spiroiminodihydantoin (Sp) and 2,2,4-triamino-2H-oxazol-5-one (Z) as major products as well as 8-oxo-7,8-dihydroguanine (OG) and 5-guanidinohydantoin (Gh) in low relative yields, while oxidation in the duplex context produced damage at the 5'- and middle-Gs of GGG sequences and resulted in Gh being the major product. Addition of the reductant N-acetylcysteine (NAC) to the reaction did not alter the riboflavin-mediated damage sites but decreased Z by 2-fold and increased OG by 5-fold, while not altering the hydantoin ratio. However, NAC completely quenched the CO3(•-) reactions. Singlet oxygen oxidations of the G-quadruplex showed reactivity at all Gs on the exterior faces of G-quartets and furnished the product Sp, while no oxidation was observed in the duplex context under these conditions, and addition of NAC had no effect. Because a long telomere sequence would have higher-order structures of G-quadruplexes, studies were also conducted with 5'-(TAGGGT)8-T-3', and it provided oxidation profiles similar to those of the single G-quadruplex. Lastly, Cu(II)/H2O2-mediated oxidations were found to be indiscriminate in the damage patterns, and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) was found to be a major duplex product, while nearly equal yields of 2Ih and Sp were observed in G-quadruplex contexts. These findings indicate that the nature of the secondary structure of folded DNA greatly alters both the reactivity of G toward oxidative stress as well as the product outcome and suggest that recognition of damage in telomeric sequences by repair enzymes may be profoundly different from that of B-form duplex DNA.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | | |
Collapse
|
20
|
Cadet J, Wagner JR. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol 2013; 5:5/2/a012559. [PMID: 23378590 DOI: 10.1101/cshperspect.a012559] [Citation(s) in RCA: 547] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Emphasis has been placed in this article dedicated to DNA damage on recent aspects of the formation and measurement of oxidatively generated damage in cellular DNA in order to provide a comprehensive and updated survey. This includes single pyrimidine and purine base lesions, intrastrand cross-links, purine 5',8-cyclonucleosides, DNA-protein adducts and interstrand cross-links formed by the reactions of either the nucleobases or the 2-deoxyribose moiety with the hydroxyl radical, one-electron oxidants, singlet oxygen, and hypochlorous acid. In addition, recent information concerning the mechanisms of formation, individual measurement, and repair-rate assessment of bipyrimidine photoproducts in isolated cells and human skin upon exposure to UVB radiation, UVA photons, or solar simulated light is critically reviewed.
Collapse
Affiliation(s)
- Jean Cadet
- Direction des Sciences de la Matière, Institut Nanosciences et Cryogénie, CEA/Grenoble, 38054 Grenoble, France.
| | | |
Collapse
|
21
|
Yadav A, Mishra P. Carbonate radical anion as an efficient reactive oxygen species: Its reaction with guanyl radical and formation of 8-oxoguanine. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2012.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Liu Y, Liu Z, Geacintov NE, Shafirovich V. Proton-coupled hole hopping in nucleosomal and free DNA initiated by site-specific hole injection. Phys Chem Chem Phys 2012; 14:7400-10. [PMID: 22526555 DOI: 10.1039/c2cp40759k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nucleosomes were reconstituted from recombinant histones and a 147-mer DNA sequence containing the damage reporter sequence 5'-…d([2AP]T[GGG](1)TT[GGG](2)TTT[GGG](3)TAT)… with 2-aminopurine (2AP) at position 27 from the dyad axis. Footprinting studies with ˙OH radicals reflect the usual effects of "in" and "out" rotational settings, while, interestingly, the guanine oxidizing one-electron oxidant CO(3)(˙-) radical does not. Site-specific hole injection was achieved by 308 nm excimer laser pulses to produce 2AP(˙+) cations, and superoxide via the trapping of hydrated electrons. Rapid deprotonation (~100 ns) and proton coupled electron transfer generates neutral guanine radicals, G(-H)˙ and hole hopping between the three groups of [GGG] on micro- to millisecond time scales. Hole transfer competes with hole trapping that involves the combination of O(2)(˙-) with G(-H)˙ radicals to yield predominantly 2,5-diamino-4H-imidazolone (Iz) and minor 8-oxo-7,8-dihydroguanine (8-oxoG) end-products in free DNA (Misiaszek et al., J. Biol. Chem. 2004, 279, 32106). Hole migration is less efficient in nucleosomal than in the identical protein-free DNA by a factor of 1.2-1.5. The Fpg/piperidine strand cleavage ratio is ~1.0 in free DNA at all three GGG sequences and at the "in" rotational settings [GGG](1,3) facing the histone core, and ~2.3 at the "out" setting at [GGG](2) facing away from the histone core. These results are interpreted in terms of competitive reaction pathways of O(2)(˙-) with G(-H)˙ radicals at the C5 (yielding Iz) and C8 (yielding 8-oxoG) positions. These differences in product distributions are attributed to variations in the local nucleosomal B-DNA base pair structural parameters that are a function of surrounding sequence context and rotational setting.
Collapse
Affiliation(s)
- Yang Liu
- Beijing Institute of Genomics, Chinese Academy of Science, Beijing 100029, China
| | | | | | | |
Collapse
|
23
|
Cadet J, Loft S, Olinski R, Evans MD, Bialkowski K, Richard Wagner J, Dedon PC, Møller P, Greenberg MM, Cooke MS. Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. Free Radic Res 2012; 46:367-81. [PMID: 22263561 DOI: 10.3109/10715762.2012.659248] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A broad scientific community is involved in investigations aimed at delineating the mechanisms of formation and cellular processing of oxidatively generated damage to nucleic acids. Perhaps as a consequence of this breadth of research expertise, there are nomenclature problems for several of the oxidized bases including 8-oxo-7,8-dihydroguanine (8-oxoGua), a ubiquitous marker of almost every type of oxidative stress in cells. Efforts to standardize the nomenclature and abbreviations of the main DNA degradation products that arise from oxidative pathways are reported. Information is also provided on the main oxidative radicals, non-radical oxygen species, one-electron agents and enzymes involved in DNA degradation pathways as well in their targets and reactivity. A brief classification of oxidatively generated damage to DNA that may involve single modifications, tandem base modifications, intrastrand and interstrand cross-links together with DNA-protein cross-links and base adducts arising from the addition of lipid peroxides breakdown products is also included.
Collapse
Affiliation(s)
- Jean Cadet
- Direction des Sciences de Matière, Institut Nanosciences et Cryogénie, CEA/Grenoble, Grenoble Cedex 9, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lim KS, Taghizadeh K, Wishnok JS, Babu IR, Shafirovich V, Geacintov NE, Dedon PC. Sequence-dependent variation in the reactivity of 8-Oxo-7,8-dihydro-2'-deoxyguanosine toward oxidation. Chem Res Toxicol 2011; 25:366-73. [PMID: 22103813 DOI: 10.1021/tx200422g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The goal of this study was to define the effect of DNA sequence on the reactivity of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) toward oxidation. To this end, we developed a quadrupole/time-of-flight (QTOF) mass spectrometric method to quantify the reactivity of site specifically modified oligodeoxyribonucleotides with two model oxidants: nitrosoperoxycarbonate (ONOOCO(2)(-)), a chemical mediator of inflammation, and photoactivated riboflavin, a classical one-electron oxidant widely studied in mutagenesis and charge transport in DNA. In contrast to previous observations with guanine [ Margolin , Y. , ( 2006 ) Nat. Chem. Biol. 2 , 365 ], sequence context did not affect the reactivity of ONOOCO(2)(-) with 8-oxodG, but photosensitized riboflavin showed a strong sequence preference in its reactivity with the following order (8-oxodG = O): COA ≈ AOG > GOG ≥ COT > TOC > AOC. That the COA context was the most reactive was unexpected and suggests a new sequence context where mutation hotspots might occur. These results point to both sequence- and agent-specific effects on 8-oxodG oxidation.
Collapse
Affiliation(s)
- Kok Seong Lim
- Department of Biological Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.
| | | | | | | | | | | | | |
Collapse
|
25
|
Lee YA, Liu Z, Dedon PC, Geacintov NE, Shafirovich V. Solvent exposure associated with single abasic sites alters the base sequence dependence of oxidation of guanine in DNA in GG sequence contexts. Chembiochem 2011; 12:1731-9. [PMID: 21656632 PMCID: PMC3517150 DOI: 10.1002/cbic.201100140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Indexed: 12/12/2022]
Abstract
The effect of exposure of guanine in double-stranded oligonucleotides to aqueous solvent during oxidation by one-electron oxidants was investigated by introducing single synthetic tetrahydrofuran-type abasic sites (Ab) either adjacent to or opposite tandem GG sequences. The selective oxidation of guanine was initiated by photoexcitation of the aromatic sensitizers riboflavin and a pyrene derivative, and by the relatively small negatively charged carbonate radical anion. The relative rates of oxidation of the 5'- and 3' side G in runs of 5'⋅⋅⋅GG⋅⋅⋅ (evaluated by standard hot alkali treatment of the damaged DNA strand followed by high resolution gel electrophoresis of the cleavage fragments) are markedly affected by adjacent abasic sites either on the same or opposite strand. For example, in fully double-stranded DNA or one with an Ab adjacent to the 5'-G, the 5'-G/3'-G damage ratio is ≥4, but is inverted (<1.0) with the Ab adjacent to the 3'-G. These striking effects of Ab are attributed to the preferential localization of the "hole" on the most solvent-exposed guanine regardless of the size, charge, or reduction potential of the oxidizing species.
Collapse
Affiliation(s)
- Young-Ae Lee
- Department of Chemistry, Kyungpook National University, Daegu 702-701 (Korea)
| | - Zhi Liu
- Chemistry Department, 31 Washington Place, New York University, New York, NY 10003- 5180 (USA)
| | - Peter C. Dedon
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Nicholas E. Geacintov
- Chemistry Department, 31 Washington Place, New York University, New York, NY 10003- 5180 (USA)
| | - Vladimir Shafirovich
- Chemistry Department, 31 Washington Place, New York University, New York, NY 10003- 5180 (USA)
| |
Collapse
|
26
|
Bietti M, DiLabio GA, Lanzalunga O, Salamone M. Time-Resolved Kinetic Study of the Electron-Transfer Reactions between Ring-Substituted Cumyloxyl Radicals and Alkylferrocenes. Evidence for an Inner-Sphere Mechanism. J Org Chem 2011; 76:1789-94. [DOI: 10.1021/jo102420p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Gino A. DiLabio
- National Institute for Nanotechnology, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, AB, Canada T6G 2M9
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC−CNR), Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5 I-00185 Rome, Italy
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| |
Collapse
|
27
|
Wenninger M, Fazio D, Megerle U, Trindler C, Schiesser S, Riedle E, Carell T. Flavin-Induced DNA Photooxidation and Charge Movement Probed by Ultrafast Transient Absorption Spectroscopy. Chembiochem 2011; 12:703-6. [DOI: 10.1002/cbic.201000730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Indexed: 02/03/2023]
|
28
|
Genereux JC, Boal AK, Barton JK. DNA-mediated charge transport in redox sensing and signaling. J Am Chem Soc 2010; 132:891-905. [PMID: 20047321 PMCID: PMC2902267 DOI: 10.1021/ja907669c] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transport of charge through the DNA base-pair stack offers a route to carry out redox chemistry at a distance. Here we describe characteristics of this chemistry that have been elucidated and how this chemistry may be utilized within the cell. The shallow distance dependence associated with these redox reactions permits DNA-mediated signaling over long molecular distances in the genome and facilitates the activation of redox-sensitive transcription factors globally in response to oxidative stress. The long-range funneling of oxidative damage to sites of low oxidation potential in the genome also may provide a means of protection within the cell. Furthermore, the sensitivity of DNA charge transport to perturbations in base-pair stacking, as may arise with base lesions and mismatches, may be used as a route to scan the genome for damage as a first step in DNA repair. Thus, the ability of double-helical DNA in mediating redox chemistry at a distance provides a natural mechanism for redox sensing and signaling in the genome.
Collapse
Affiliation(s)
- Joseph C. Genereux
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125,
| | - Amie K. Boal
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125,
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125,
| |
Collapse
|
29
|
Barbosa LF, Cerqueira FM, Macedo AFA, Garcia CCM, Angeli JPF, Schumacher RI, Sogayar MC, Augusto O, Carrì MT, Di Mascio P, Medeiros MHG. Increased SOD1 association with chromatin, DNA damage, p53 activation, and apoptosis in a cellular model of SOD1-linked ALS. Biochim Biophys Acta Mol Basis Dis 2010; 1802:462-71. [PMID: 20097285 DOI: 10.1016/j.bbadis.2010.01.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/23/2009] [Accepted: 01/15/2010] [Indexed: 12/16/2022]
Abstract
Mutations in the gene encoding cytosolic Cu,Zn-superoxide dismutase (SOD1) have been linked to familial amyotrophic lateral sclerosis (FALS). However the molecular mechanisms of motor neuron death are multi-factorial and remain unclear. Here we examined DNA damage, p53 activity and apoptosis in SH-SY5Y human neuroblastoma cells transfected to achieve low-level expression of either wild-type or mutant Gly(93)-->Ala (G93A) SOD1, typical of FALS. DNA damage was investigated by evaluating the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and DNA strand breaks. Significantly higher levels of DNA damage, increased p53 activity, and a greater percentage of apoptotic cells were observed in SH-SY5Y cells transfected with G93A SOD1 when compared to cells overexpressing wild-type SOD1 and untransfected cells. Western blot, FACS, and confocal microscopy analysis demonstrated that G93A SOD1 is present in the nucleus in association with DNA. Nuclear G93A SOD1 has identical superoxide dismutase activity but displays increased peroxidase activity when compared to wild-type SOD1. These results indicate that the G93A mutant SOD1 association with DNA might induce DNA damage and trigger the apoptotic response by activating p53. This toxic activity of mutant SOD1 in the nucleus may play an important role in the complex mechanisms associated with motor neuron death observed in ALS pathogenesis.
Collapse
Affiliation(s)
- Livea F Barbosa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kaloudis P, Paris C, Vrantza D, Encinas S, Pérez-Ruiz R, Miranda MA, Gimisis T. Photolabile N-hydroxypyrid-2(1H)-one derivatives of guanine nucleosides: a new method for independent guanine radical generation. Org Biomol Chem 2009; 7:4965-72. [PMID: 19907788 DOI: 10.1039/b909138f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-electron oxidized guanine is an important reactive intermediate in the formation of oxidatively generated damage in DNA and a variety of methods have been utilized for the abstraction of a single electron from the guanine moiety. In this study, an alternative approach for the site specific, independent generation of the guanine radical, utilizing N-hydroxypyrid-2(1H)-one as a photolabile modifier of guanine, is proposed. Novel photolabile 6-[(1-oxido-2-pyridinyl)oxo]-6-deoxy- and 2',6-dideoxy-guanosine derivatives capable of generating the neutral guanine radical (G(-H)*) upon photolysis were synthesized and characterized. The generation of G(-H)* proceeds through homolysis of the N-O bond and was confirmed through continuous photolysis product analysis and trapping studies, as well as laser flash photolysis experiments.
Collapse
Affiliation(s)
- Panagiotis Kaloudis
- Organic Chemistry Laboratory, Department of Chemistry, University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
31
|
Agnihotri N, Mishra PC. Mutagenic Product Formation Due to Reaction of Guanine Radical Cation with Nitrogen Dioxide. J Phys Chem B 2009; 113:3129-38. [DOI: 10.1021/jp805942y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Neha Agnihotri
- Department of Physics, Banaras Hindu University, Varanasi - 221 005, India
| | - P. C. Mishra
- Department of Physics, Banaras Hindu University, Varanasi - 221 005, India
| |
Collapse
|
32
|
Ogusucu R, Rettori D, Netto LES, Augusto O. Superoxide dismutase 1-mediated production of ethanol- and DNA-derived radicals in yeasts challenged with hydrogen peroxide: molecular insights into the genome instability of peroxiredoxin-null strains. J Biol Chem 2008; 284:5546-56. [PMID: 19106092 DOI: 10.1074/jbc.m805526200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1Deltatsa2Delta) are more resistant to hydrogen peroxide than wild-type (WT) cells and consume it faster under fermentative conditions. Also, tsa1Deltatsa2Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1Deltatsa2Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu,Zn-superoxide dismutase (Sod1), whose expression and activity increased approximately 5- and 2-fold, respectively, in tsa1Deltatsa2Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1Deltatsa2Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1Deltatsa2Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.
Collapse
Affiliation(s)
- Renata Ogusucu
- Departamento de Bioquímica, Instituto de Química and Departamento de Biologia, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 26077, São Paulo 05513-970, SP, Brazil
| | | | | | | |
Collapse
|
33
|
Crean C, Geacintov NE, Shafirovich V. Intrastrand G-U cross-links generated by the oxidation of guanine in 5'-d(GCU) and 5'-r(GCU). Free Radic Biol Med 2008; 45:1125-34. [PMID: 18692567 PMCID: PMC2577587 DOI: 10.1016/j.freeradbiomed.2008.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 07/10/2008] [Accepted: 07/10/2008] [Indexed: 12/18/2022]
Abstract
It has been suggested that carbonate radical anions are biologically important because they may be produced during the inflammatory response. The carbonate radicals can selectively oxidize guanine in DNA and RNA by one-electron transfer mechanisms and the guanine radicals thus formed decay by diverse competing pathways with other free radicals or nucleophiles. Using a photochemical method to generate CO(3)(-) radicals in vitro, we compare the distributions of products initiated by the one-electron oxidation of guanine in the trinucleotides 5'-r(GpCpU) and 5'-d(GpCpU) in aqueous buffer solutions (pH 7.5). Similar distributions of stable end products identified by LC-MS/MS methods were found in both cases. The guanine oxidation products include the diastereomeric pair of spiroiminodihydantoin (Sp) and 2,5-diamino-4H-imidazolone (Iz). In addition, intrastrand cross-linked products involving covalent bonds between the G and the U bases (GCU) were also found, although with different relative yields in the 2'-deoxy- and the ribotrinucleotides. The positive-ion MS/MS spectra of the 5'-r(GpCpU) and 5'-d(GpCpU) products clearly indicate the presence of covalently linked G-U products that have a mass smaller by 2 Da than the sum of the G and U bases in both types of trinucleotides. The 5'-d(GCU) cross-linked product was further characterized by 1D and 2D NMR methods that confirm its cyclic structure in which the guanine C8 atom is covalently linked to the uracil N3 atom.
Collapse
Affiliation(s)
| | | | - Vladimir Shafirovich
- Corresponding author. Chemistry Department, New York University, 31 Washington Place, New York, NY 10003, USA. Tel: + 1 212 998 8456; Fax: + 1 212 998 8421, E-mail address: (V. Shafirovich)
| |
Collapse
|
34
|
Yamagami R, Kobayashi K, Tagawa S. Formation of spectral intermediate G-C and A-T anion complex in duplex DNA studied by pulse radiolysis. J Am Chem Soc 2008; 130:14772-7. [PMID: 18841971 DOI: 10.1021/ja805127e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamics of electron adducts of 2'-deoxynucleotides and oligonucelotides (ODNs) were measured spectroscopically by nanosecond pulse radiolysis. The radical anions of the nucleotides were produced within 10 ns by the reaction of hydrated electrons (e(aq)(-)) and were protonated to form the corresponding neutral radicals. At pH 7.0, the radical anion of deoxythymidine (dT(*-)) was protonated to form the neutral radical dT(H)(*) in the time range of microseconds. The rate constant for the protonation was determined as 1.8 x 10(10) M(-1) s(-1). In contrast, the neutral radical of dC(H)(*) was formed immediately after the pulse, suggesting that the protonation occurs within 10 ns. The transient spectra of excess electrons of the double-stranded ODNs 5'-TAATTTAATAT-3' (AT) and 5'-CGGCCCGGCGC-3' (GC) differed from those of pyrimidine radicals (C and T) and their composite. In contrast, the spectra of the electron adducts of the single-stranded ODNs GC and AT exhibited characteristics of C and T, respectively. These results suggest that, in duplex ODNs, the spectral intermediates of G-C and A-T anions complex were formed. On the microsecond time scale, the subsequent changes in absorbance of the ODN AT had a first-order rate constant of 4 x 10(4) s(-1), reflecting the protonation of T.
Collapse
Affiliation(s)
- Ryuhei Yamagami
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki Osaka 567-0047, Japan
| | | | | |
Collapse
|
35
|
Labet V, Grand A, Cadet J, Eriksson LA. Deamination of the radical cation of the base moiety of 2'-deoxycytidine: a theoretical study. Chemphyschem 2008; 9:1195-203. [PMID: 18438773 DOI: 10.1002/cphc.200800154] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Five pathways leading to the deamination of cytosine (to uracil) after formation of its deprotonated radical cation are investigated in the gas phase, at the UB3LYP/6-311G(d,p) level of theory, and in bulk aqueous solvent. The most favorable pathway involves hydrogen-atom transfer from a water molecule to the N3 nitrogen of the deprotonated radical cation, followed by addition of the resulting hydroxyl radical to the C4 carbon of the cytosine derivative. Following protonation of the amino group (N4), the C4--N4 bond is broken with elimination of the NH3+(. ) and formation of a protonated uracil. The rate-determining step of this mechanism is hydrogen-atom transfer from a water molecule to the cytosine derivative. The associated free energy barrier is 70.2 kJ mol(-1).
Collapse
Affiliation(s)
- Vanessa Labet
- Laboratoire "Lésions des Acides Nucléiques", INaC/SCIB, UMR-E 3 (CEA/UJF), CEA-Grenoble, 17 avenue des Martyrs, F-38054 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
36
|
Kobayashi K, Yamagami R, Tagawa S. Effect of base sequence and deprotonation of Guanine cation radical in DNA. J Phys Chem B 2008; 112:10752-7. [PMID: 18680360 DOI: 10.1021/jp804005t] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The deprotonation of guanine cation radical (G+*) in oligonucleotides (ODNs) was measured spectroscopically by nanosecond pulse radiolysis. The G+* in ODN, produced by oxidation with SO4-*, deprotonates to form the neutral G radical (G(-H)*). In experiments using 5-substituted cytosine-modified ODN, substitution of the cytosine C5 hydrogen by a methyl group increased the rate constant of deprotonation, whereas replacement by bromine decreased the rate constant. Kinetic solvent isotope effects on the kinetics of deoxyguanosine (dG) and ODN duplexes were examined in H2O and D2O. The rate constant of formation of G(-H)* in dG was 1.7-fold larger in H2O than D2O, whereas the rate constant in the ODN duplex was 3.8-fold larger in H2O than D2O. These results suggest that the formation of G(-H)* from G+* in the ODN corresponds to the deprotonation of the oxidized hydrogen-bridged (G+*-C) base pair by a water molecule. The characteristic absorption maxima of G+* around 400 nm were shifted to a longer wavelength in the order of G<GG<GGG-containing ODNs. In contrast, the spectra of G(-H)* were not affected by the sequence and were essentially similar to that of free dG. These results suggest that the positive charge in G+* in ODN is delocalized over the extended pi orbitals of DNA base. The rate constant of the deprotonation was altered by the sequence of ODNs, where bases adjacent to guanine are important factors for deprotonation.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.
| | | | | |
Collapse
|
37
|
Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc Chem Res 2008; 41:1075-83. [PMID: 18666785 DOI: 10.1021/ar700245e] [Citation(s) in RCA: 414] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear DNA and other molecules in living systems are continuously exposed to endogenously generated oxygen species. Such species range from the unreactive superoxide radical (O2*-)the precursor of hydrogen peroxide (H2O2)to the highly reactive hydroxyl radical (*OH). Exogenous chemical and physical agents, such as ionizing radiation and the UVA component of solar light, can also oxidatively damage both the bases and the 2-deoxyribose moieties of cellular DNA. Over the last two decades, researchers have made major progress in understanding the oxidation degradation pathways of DNA that are most likely to occur from either oxidative metabolism or exposure to various exogenous agents. In the first part of this Account, we describe the mechanistic features of one-electron oxidation reactions of the guanine base in isolated DNA and related model compounds. These reactions illustrate the complexity of the various degradation pathways involved. Then, we briefly survey the analytical methods that can detect low amounts of oxidized bases and nucleosides in cells as they are formed. Recent data on the formation of oxidized guanine residues in cellular DNA following exposure to UVA light, ionizing radiation, and high-intensity UV pulses are also provided. We discuss these chemical reactions in the context of *OH radical, singlet oxygen, and two-quantum photoionization processes.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire “Lésions des Acides Nucléiques”, SCIB-UMR-E n3 (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
- Department of Nuclear Medicine and Health Science, University of Sherbrooke, Quebec J1H 5N4, Canada
| | - Thierry Douki
- Laboratoire “Lésions des Acides Nucléiques”, SCIB-UMR-E n3 (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
| | - Jean-Luc Ravanat
- Laboratoire “Lésions des Acides Nucléiques”, SCIB-UMR-E n3 (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
| |
Collapse
|
38
|
Shukla PK, Mishra PC. Catalytic Involvement of CO2 in the Mutagenesis Caused by Reactions of ONOO- with Guanine. J Phys Chem B 2008; 112:4779-89. [DOI: 10.1021/jp710418b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- P. K. Shukla
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | - P. C. Mishra
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
39
|
Lee YA, Durandin A, Dedon PC, Geacintov NE, Shafirovich V. Oxidation of guanine in G, GG, and GGG sequence contexts by aromatic pyrenyl radical cations and carbonate radical anions: relationship between kinetics and distribution of alkali-labile lesions. J Phys Chem B 2008; 112:1834-44. [PMID: 18211057 DOI: 10.1021/jp076777x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidatively generated DNA damage induced by the aromatic radical cation of the pyrene derivative 7,8,9,10-tetrahydroxytetrahydrobenzo[a]pyrene (BPT), and by carbonate radicals anions, was monitored from the initial one-electron transfer, or hole injection step, to the formation of hot alkali-labile chemical end-products monitored by gel electrophoresis. The fractions of BPT molecules bound to double-stranded 20-35-mer oligonucleotides with noncontiguous guanines G and grouped as contiguous GG and GGG sequences were determined by a fluorescence quenching method. Utilizing intense nanosecond 355 nm Nd:YAG laser pulses, the DNA-bound BPT molecules were photoionized to BPT*+ radicals by a consecutive two-photon ionization mechanism. The BPT*+ radicals thus generated within the duplexes selectively oxidize guanine by intraduplex electron-transfer reactions, and the rate constants of these reactions follow the trend 5'-..GGG.. > 5'-..GG.. > 5'-..G... In the case of CO3*- radicals, the oxidation of guanine occurs by intermolecular collision pathways, and the bimolecular rate constants are independent of base sequence context. However, the distributions of the end-products generated by CO3*- radicals, as well as by BPT*+, are base sequence context-dependent and are greater than those in isolated guanines at the 5'-G in 5'-...GG... sequences, and the first two 5'- guanines in the 5'-..GGG sequences. These results help to clarify the conditions that lead to a similar or different base sequence dependence of the initial hole injection step and the final distribution of oxidized, alkali-labile guanine products. In the case of the intermolecular one-electron oxidant CO3*-, the rate constant of hole injection is similar for contiguous and isolated guanines, but the subsequent equilibration of holes by hopping favors trapping and product formation at contiguous guanines, and the sequence dependence of these two phenomena are not correlated. In contrast, in the case of the DNA-bound oxidant BPT*+, the hole injection rate constants, as well as hole equilibration, exhibit a similar dependence on base sequence context, and are thus correlated to one another.
Collapse
Affiliation(s)
- Young Ae Lee
- Chemistry Department, New York University, New York, NY 10003-5180, USA
| | | | | | | | | |
Collapse
|
40
|
Crean C, Uvaydov Y, Geacintov NE, Shafirovich V. Oxidation of single-stranded oligonucleotides by carbonate radical anions: generating intrastrand cross-links between guanine and thymine bases separated by cytosines. Nucleic Acids Res 2007; 36:742-55. [PMID: 18084033 PMCID: PMC2241916 DOI: 10.1093/nar/gkm1092] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The carbonate radical anion is a biologically important one-electron oxidant that can directly abstract an electron from guanine, the most easily oxidizable DNA base. Oxidation of the 5'-d(CCTACGCTACC) sequence by photochemically generated CO3*- radicals in low steady-state concentrations relevant to biological processes results in the formation of spiroiminodihydantoin diastereomers and a previously unknown lesion. The latter was excised from the oxidized oligonucleotides by enzymatic digestion with nuclease P1 and alkaline phosphatase and identified by LC-MS/MS as an unusual intrastrand cross-link between guanine and thymine. In order to further characterize the structure of this lesion, 5'-d(GpCpT) was exposed to CO3*- radicals, and the cyclic nature of the 5'-d(G*pCpT*) cross-link in which the guanine C8-atom is bound to the thymine N3-atom was confirmed by LC-MS/MS, 1D and 2D NMR studies. The effect of bridging C bases on the cross-link formation was studied in the series of 5'-d(GpC(n)pT) and 5'-d(TpC(n)pG) sequences with n = 0, 1, 2 and 3. Formation of the G*-T* cross-links is most efficient in the case of 5'-d(GpCpT). Cross-link formation (n = 0) was also observed in double-stranded DNA molecules derived from the self-complementary 5'-d(TTACGTACGTAA) sequence following exposure to CO3*- radicals and enzymatic excision of the 5'-d(G*pT*) product.
Collapse
Affiliation(s)
- Conor Crean
- Chemistry Department and Radiation and Solid State Laboratory, 31 Washington Place, New York University, New York, NY 10003-5180, USA
| | | | | | | |
Collapse
|