1
|
Ayyalasomayajula R, Boneva I, Ormaza D, Whyte A, Farook K, Gorlin Z, Yancey E, André S, Kaltner H, Cudic M. Synthesis and Thermodynamic Evaluation of Sialyl-Tn MUC1 Glycopeptides Binding to Macrophage Galactose-Type Lectin. Chembiochem 2024; 25:e202400391. [PMID: 38877657 PMCID: PMC11560554 DOI: 10.1002/cbic.202400391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Interactions between the tumor-associated carbohydrate antigens of Mucin 1 (MUC1) and the carbohydrate-binding proteins, lectins, often lead to the creation of a pro-tumor microenvironment favoring tumor initiation, progression, metastasis, and immune evasion. Macrophage galactose binding lectin (MGL) is a C-type lectin receptor found on antigen-presenting cells that facilitates the uptake of carbohydrate antigens for antigen presentation, modulating the immune response homeostasis, autoimmunity, and cancer. Considering the crucial role of tumor-associated forms of MUC1 and MGL in tumor immunology, a thorough understanding of their binding interaction is essential for it to be exploited for cancer vaccine strategies. The synthesis of MUC1 glycopeptide models carrying a single or multiple Tn and/or sialyl-Tn antigen(s) is described. A novel approach for the sialyl-Tn threonine building block suitable for the solid phase peptide synthesis was developed. The thermodynamic profile of the binding interaction between the human MGL and MUC1 glycopeptide models was analyzed using isothermal titration calorimetry. The measured dissociation constants for the sialyl-Tn-bearing peptide epitopes were consistently lower compared to the Tn antigen and ranged from 10 μM for mono- to 1 μM for triglycosylated MUC1 peptide, respectively. All studied interactions, regardless of the glycan's site of attachment or density, exhibited enthalpy-driven thermodynamics.
Collapse
Affiliation(s)
- Ramya Ayyalasomayajula
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Ivet Boneva
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - David Ormaza
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Andrew Whyte
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Kamran Farook
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Zachary Gorlin
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Evelyn Yancey
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| | - Sabine André
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-Universität München, Lena-Christ-Str. 48, 82152, Planegg-Martinsried
| | - Herbert Kaltner
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-Universität München, Lena-Christ-Str. 48, 82152, Planegg-Martinsried
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431
| |
Collapse
|
2
|
Forsythe NP, Mize ER, Kashiwagi GA, Demchenko AV. Expedient Synthesis of Superarmed Glycosyl Donors via Oxidative Thioglycosidation of Glycals. SYNTHESIS-STUTTGART 2024; 56:1147-1156. [PMID: 38655286 PMCID: PMC11034933 DOI: 10.1055/a-2183-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Superarmed glycosyl donors have higher reactivity compared to their perbenzylated armed counterparts. Generally, the 2-O- benzoyl-3,4,6-tri-O-benzyl protecting group pattern gives rise to increased reactivity due to an O-2/O-5 cooperative effect. Despite having a high reactivity profile and applicability in many expeditious strategies for glycan synthesis, regioselective introduction of the superarming protecting group pattern is tedious for most sugar series. Reported herein is a streamlined synthetic route to yield superarmed glycosyl donors of the d-gluco and d-galacto series equipped with an ethylthio, phenylthio, p-tolylthio, benzoxazol-2-ylthio, O-allyl, or O-pentenyl anomeric leaving group. This streamlined approach was made possible due to the refinement of the oxidative thioglycosylation reaction of the respective glucal and galactal precursors. The applicability of this approach to the direct formation of disaccharides is also showcased.
Collapse
Affiliation(s)
- Nicholas P Forsythe
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA
| | - Emma R Mize
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA
| | - Gustavo A Kashiwagi
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA
| |
Collapse
|
3
|
Hassan AA, Huang ML. Stereoselective synthesis of photoactivatable Man(β1,4)GlcNAc-based bioorthogonal probes. Tetrahedron Lett 2023; 122:154521. [PMID: 37274137 PMCID: PMC10237449 DOI: 10.1016/j.tetlet.2023.154521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report an operationally facile protocol to prepare photoactivatable probes of the bioactive mammalian disaccharide, Man(β1,4)GlcNAc. Using conformationally restricted mannosyl hemi-acetal donors in a one-pot chlorination, iodination and glycosylation sequence, β-mannosides were generated in excellent diastereoselectivities and yields. Upon accessing the disaccharide, we generated the corresponding photoactivatable probes by appending a diazirine-alkyne equipped linker via a condensation reaction between a diazirine-containing linker and C-1 and C-2 derivatized mannosylamines to furnish the desired C-1 and C-2 modified Man(β1,4)GlcNAc-based probes. This new synthetic protocol greatly simplifies the preparation of this important bioactive disaccharide to enable future work to identify its protein binding partners in cells.
Collapse
Affiliation(s)
- Abdullah A. Hassan
- Department of Molecular Medicine and Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Mia L. Huang
- Department of Molecular Medicine and Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
4
|
Singh Y, Geringer SA, Demchenko AV. Synthesis and Glycosidation of Anomeric Halides: Evolution from Early Studies to Modern Methods of the 21st Century. Chem Rev 2022; 122:11701-11758. [PMID: 35675037 PMCID: PMC9417321 DOI: 10.1021/acs.chemrev.2c00029] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic carbohydrate chemistry have dramatically improved access to common glycans. However, many novel methods still fail to adequately address challenges associated with chemical glycosylation and glycan synthesis. Since a challenge of glycosylation has remained, scientists have been frequently returning to the traditional glycosyl donors. This review is dedicated to glycosyl halides that have played crucial roles in shaping the field of glycosciences and continue to pave the way toward our understanding of chemical glycosylation.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
5
|
Bols M, Frihed TG, Pedersen MJ, Pedersen CM. Silylated Sugars – Synthesis and Properties. Synlett 2021. [DOI: 10.1055/s-0040-1719854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractSilicon has been used in carbohydrate chemistry for half a century, but mostly as a protective group for sugar alcohols. Recently, the use of silicon has expanded to functionalization via C–H activation, conformational arming of glycosyl donors, and conformational alteration of carbohydrates. Silicon has proven useful as more than a protective group and during the last one and a half decades we have demonstrated how it influences both the reactivity of glycosyl donors and stereochemical outcome of glycosylations. Silicon can also be attached directly to the sugar C-backbone, which has even more pronounced effects on the chemistry and properties of the molecules. In this Account, we will give a tour through our work involving silicon and carbohydrates.1 Introduction2 Conformational Arming of Glycosyl Donors with Silyl Groups3 Silyl Protective Groups for Tethering Glycosyl Donors4. Si–C Glycosides via C–H Activation4.1 C–H Activation and Oxidation of Methyl 6-Deoxy-l-glycosides4.2 Synthesis of All Eight 6-Deoxy-l-sugars4.3 Synthesis of All Eight l-Sugars by C–H Activation4.4 Modification of the Oxasilolane Ring5 C–Si in Glycosyl Donors – Activating or Not?6 Si–C-Substituted Pyranosides7 Perspective
Collapse
Affiliation(s)
- Mikael Bols
- University of Copenhagen, Department of Chemistry
| | | | | | | |
Collapse
|
6
|
Das A, Jayaraman N. Carbon tetrachloride-free allylic halogenation-mediated glycosylations of allyl glycosides. Org Biomol Chem 2021; 19:9318-9325. [PMID: 34664608 DOI: 10.1039/d1ob01298c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The allylic bromination of allyl glycosides is conducted using NBS/AIBN reagents in (EtO)2CO and PhCF3 solutions, without using CCl4 as a solvent. The activated mixed halo-allyl glycosides led to glycosylations, mediated by a triflate, in a latent-active manner, with the allyl glycosides acting as donors and acceptors. Systematic glycosylation studies are performed with different triflate promoters, non-glycosyl acceptors and various allyl glycosyl donors. One-pot allylic halogenations and subsequent glycosylations are developed in PhCF3 solutions. This newer glycosylation method is utilized to obtain xylo-pyranoside di- and trisaccharides.
Collapse
Affiliation(s)
- Anupama Das
- Department of Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | | |
Collapse
|
7
|
Quirke JCK, Crich D. GH47 and Other Glycoside Hydrolases Catalyze Glycosidic Bond Cleavage with the Assistance of Substrate Super-arming at the Transition State. ACS Catal 2021; 11:10308-10315. [PMID: 34777906 PMCID: PMC8579916 DOI: 10.1021/acscatal.1c02750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Super-armed glycosyl donors, whose substituents are predominantly held in pseudoaxial positions, exhibit strongly increased reactivity in glycosylation through significant stabilization of oxocarbenium-like transition states. Examination of X-ray crystal structures reveals that the GH47 family of glycoside hydrolases have evolved so as to distort their substrates away from the ground state conformation in such a manner as to present multiple C-O bonds in pseudoaxial positions and so benefit from conformational super-arming of their substrates, thereby enhancing catalysis. Through analysis of literature mutagenic studies, we show that a suitably placed aromatic residue in GHs 6 and 47 sterically enforces super-armed conformations on their substrates. GH families 45, 81, and 134 on the other hand impose conformational super-arming on their substrates, by maintaining the more active ring conformation through hydrogen bonding rather than steric interactions. The recognition of substrate super-arming by select GH families provides a further parallel with synthetic carbohydrate chemistry and nature and opens further avenues for the design of improved glycosidase inhibitors.
Collapse
Affiliation(s)
- Jonathan C K Quirke
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
8
|
Chang CW, Lin MH, Chan CK, Su KY, Wu CH, Lo WC, Lam S, Cheng YT, Liao PH, Wong CH, Wang CC. Automated Quantification of Hydroxyl Reactivities: Prediction of Glycosylation Reactions. Angew Chem Int Ed Engl 2021; 60:12413-12423. [PMID: 33634934 DOI: 10.1002/anie.202013909] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/07/2021] [Indexed: 12/17/2022]
Abstract
The stereoselectivity and yield in glycosylation reactions are paramount but unpredictable. We have developed a database of acceptor nucleophilic constants (Aka) to quantify the nucleophilicity of hydroxyl groups in glycosylation influenced by the steric, electronic and structural effects, providing a connection between experiments and computer algorithms. The subtle reactivity differences among the hydroxyl groups on various carbohydrate molecules can be defined by Aka, which is easily accessible by a simple and convenient automation system to assure high reproducibility and accuracy. A diverse range of glycosylation donors and acceptors with well-defined reactivity and promoters were organized and processed by the designed software program "GlycoComputer" for prediction of glycosylation reactions without involving sophisticated computational processing. The importance of Aka was further verified by random forest algorithm, and the applicability was tested by the synthesis of a Lewis A skeleton to show that the stereoselectivity and yield can be accurately estimated.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chieh-Kai Chan
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Kuan-Yu Su
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chia-Hui Wu
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Wei-Chih Lo
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Sarah Lam
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Ting Cheng
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Pin-Hsuan Liao
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Huey Wong
- The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.,Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, 92037, USA
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
9
|
Chang C, Lin M, Chan C, Su K, Wu C, Lo W, Lam S, Cheng Y, Liao P, Wong C, Wang C. Automated Quantification of Hydroxyl Reactivities: Prediction of Glycosylation Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chun‐Wei Chang
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Mei‐Huei Lin
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Chieh‐Kai Chan
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Kuan‐Yu Su
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Chia‐Hui Wu
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Wei‐Chih Lo
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Sarah Lam
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Yu‐Ting Cheng
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Pin‐Hsuan Liao
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Chi‐Huey Wong
- The Genomics Research Center Academia Sinica Taipei 115 Taiwan
- Department of Chemistry The Scripps Research Institute 10550 N Torrey Pines Road La Jolla 92037 USA
| | - Cheng‐Chung Wang
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
- Chemical Biology and Molecular Biophysics Program Taiwan International Graduate Program (TIGP) Academia Sinica Taipei 115 Taiwan
| |
Collapse
|
10
|
Ghouilem J, Tran C, Grimblat N, Retailleau P, Alami M, Gandon V, Messaoudi S. Diastereoselective Pd-Catalyzed Anomeric C(sp3)–H Activation: Synthesis of α-(Hetero)aryl C-Glycosides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Juba Ghouilem
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Christine Tran
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Nicolas Grimblat
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 S2002LRK, Rosario, República Argentina
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Vincent Gandon
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France
- Université Paris-Saclay, CNRS, ICMMO, 91405, Orsay Cedex, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| |
Collapse
|
11
|
Cai L, Meng L, Zeng J, Wan Q. Sequential activation of thioglycosides enables one-pot glycosylation. Org Chem Front 2021. [DOI: 10.1039/d0qo01414a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review describes recent developments in relative reactivity value (RRV) controlled sequential glycosylation, pre-activation based iterative glycosylation, and sulfoxide activation initiated one-pot glycosylation.
Collapse
Affiliation(s)
- Lei Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| |
Collapse
|
12
|
Chang CW, Lin MH, Wang CC. Statistical Analysis of Glycosylation Reactions. Chemistry 2020; 27:2556-2568. [PMID: 32939892 DOI: 10.1002/chem.202003105] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Indexed: 12/27/2022]
Abstract
Chemical synthesis is one of the practical approaches to access carbohydrate-based natural products and their derivatives with high quality and in a large quantity. However, stereoselectivity during the glycosylation reaction is the main challenge because the reaction can generate both α- and β-glycosides. The main focus of the present article is the concept of recent mechanistic studies that have applied statistical analysis and quantitation for defining stereoselective changes during the reaction process. Based on experimental evidence, a detailed discussion associated with the mechanism and degree of influence affecting the stereoselective outcome of glycosylation is included.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan.,Chemical Biology and Molecular Biophysics Program (Taiwan), International Graduate Program (TIGP), Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
13
|
Villameriel JM, Pedersen CM. Conformational Lock of Glycosyl Donors Using Cyclic Carbamates. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Ahmed A, Rasool F, Singh G, Katoch M, Mukherjee D. Synthesis and Conformational Analysis of 2- O
-Silyl Protected Nucleosides from Unprotected Nucleobases and Sugar Epoxides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ajaz Ahmed
- Natural Product Chemistry Division; Indian Institute of Integrative Medicine (IIIM); Jammu India
- Academy of Scientific and Innovative Research (AcSIR-IIIM); 180001 Jammu India
| | - Faheem Rasool
- Natural Product Chemistry Division; Indian Institute of Integrative Medicine (IIIM); Jammu India
- Academy of Scientific and Innovative Research (AcSIR-IIIM); 180001 Jammu India
| | - Gurpreet Singh
- Academy of Scientific and Innovative Research (AcSIR-IIIM); 180001 Jammu India
- Microbial Biotechnology Division; Indian Institute of Integrative Medicine (IIIM); Jammu India
| | - Meenu Katoch
- Academy of Scientific and Innovative Research (AcSIR-IIIM); 180001 Jammu India
- Microbial Biotechnology Division; Indian Institute of Integrative Medicine (IIIM); Jammu India
| | - Debaraj Mukherjee
- Natural Product Chemistry Division; Indian Institute of Integrative Medicine (IIIM); Jammu India
- Academy of Scientific and Innovative Research (AcSIR-IIIM); 180001 Jammu India
| |
Collapse
|
15
|
Panza M, Civera M, Yasomanee JP, Belvisi L, Demchenko AV. Bromine-Promoted Glycosidation of Conformationally Superarmed Thioglycosides. Chemistry 2019; 25:11831-11836. [PMID: 31286579 DOI: 10.1002/chem.201901969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/03/2019] [Indexed: 01/24/2023]
Abstract
Presented herein is a study of the conformation and reactivity of highly reactive thioglycoside donors. The structural studies have been conducted using NMR spectroscopy and computational methods. The reactivity of these donors has been investigated in bromine-promoted glycosylations of aliphatic and sugar alcohols. Swift reaction times, high yields, and respectable 1,2-cis stereoselectivity were observed in a majority of these glycosylations.
Collapse
Affiliation(s)
- Matteo Panza
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Monica Civera
- Department of Chemistry, University of Milan, 20133, Milan, Italy
| | - Jagodige P Yasomanee
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Laura Belvisi
- Department of Chemistry, University of Milan, 20133, Milan, Italy
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| |
Collapse
|
16
|
Pal R, Das A, Jayaraman N. One-pot oligosaccharide synthesis: latent-active method of glycosylations and radical halogenation activation of allyl glycosides. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Chemical glycosylations occupy a central importance to synthesize tailor-made oligo- and polysaccharides of functional importance. Generation of the oxocarbenium ion or the glycosyl cation is the method of choice in order to form the glycosidic bond interconnecting a glycosyl moiety with a glycosyl/aglycosyl moiety. A number of elegant methods have been devised that allow the glycosyl cation formation in a fairly stream-lined manner to a large extent. The latent-active method provides a powerful approach in the protecting group controlled glycosylations. In this context, allyl glycosides have been developed to meet the requirement of latent-active reactivities under appropriate glycosylation conditions. Radical halogenation provides a newer route of activation of allyl glycosides to an activated allylic glycoside. Such an allylic halide activation subjects the glycoside reactive under acid catalysis, leading to the conversion to a glycosyl cation and subsequent glycosylation with a number of acceptors. The complete anomeric selectivity favoring the 1,2-trans-anomeric glycosides points to the possibility of a preferred conformation of the glycosyl cation. This article discusses about advancements in the selectivity of glycosylations, followed by delineating the allylic halogenation of allyl glycoside as a glycosylation method and demonstrates synthesis of a repertoire of di- and trisaccharides, including xylosides, with varied protecting groups.
Collapse
Affiliation(s)
- Rita Pal
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Anupama Das
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | | |
Collapse
|
17
|
Wang J, Deng C, Zhang Q, Chai Y. Tuning the Chemoselectivity of Silyl Protected Rhamnals by Temperature and Brønsted Acidity: Kinetically Controlled 1,2-Addition vs Thermodynamically Controlled Ferrier Rearrangement. Org Lett 2019; 21:1103-1107. [PMID: 30714737 DOI: 10.1021/acs.orglett.9b00009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An acidity- and temperature-dependent chemoselective glycosylation of silyl-protected rhamnals with alcohols has been revealed. The reaction undergoes a 1,2-addition pathway with (±)-CSA as the catalyst at rt, affording kinetically controlled 2-deoxyl rhamnosides. In contrast, only thermodynamically controlled 2,3-unsaturated rhamnosides are formed via Ferrier rearrangement when elevating reaction temperature to 85 °C or using CF3SO3H instead. This tunable glycosylation allows facile and practical access to both 2-deoxyl and 2,3-unsaturated rhamnosides with excellent yields and high α-stereoselectivity.
Collapse
Affiliation(s)
- Jincai Wang
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Xi'an , Shaanxi 710119 , P. R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| | - Chuqiao Deng
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Xi'an , Shaanxi 710119 , P. R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| | - Yonghai Chai
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Xi'an , Shaanxi 710119 , P. R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| |
Collapse
|
18
|
Doyle LM, Meany FB, Murphy PV. Lewis acid promoted anomerisation of alkyl O- and S-xylo-, arabino- and fucopyranosides. Carbohydr Res 2019; 471:85-94. [PMID: 30508660 DOI: 10.1016/j.carres.2018.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Pentopyranoside and 6-deoxyhexopyranosides, such as those from d-xylose, l-arabinose and l-fucose are components of natural products, oligosaccharides or polysaccharides. Lewis acid promoted anomerisation of some of their alkyl O- and S-glycopyranosides is reported here. SnCl4 was more successful than TiCl4, with the latter giving the glycosyl chloride by-product in some cases, and both were superior to BF3OEt2. Kinetics study using 1H NMR spectroscopy showed an order of reactivity: O-xylopyranoside > O-arabinopyranoside > O-fucopyranoside. Benzoylated glycosides were more reactive than acetylated glycosides. The reactivity of S-glycosides was greater than that of O-glycosides for both arabinose and fucose derivatives; the reactivity of O- and S-xylopyranosides was similar. The highest stereoselectivities were observed for fucopyranosides. The β-d-xylopyranoside and α-l-arabinopyranoside reactants are conformationally more flexible than β-l-fucopyranosides.
Collapse
Affiliation(s)
- Lisa M Doyle
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Fiach B Meany
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
19
|
Häner M, Herrstedt Hammelev C, Pedersen CM. Conformational Distortion Using a Molecular Lever: Synthesis and Conformational Studies of Galactoside Derivatives. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Markus Häner
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| | | | | |
Collapse
|
20
|
Panza M, Pistorio SG, Stine KJ, Demchenko AV. Automated Chemical Oligosaccharide Synthesis: Novel Approach to Traditional Challenges. Chem Rev 2018; 118:8105-8150. [PMID: 29953217 PMCID: PMC6522228 DOI: 10.1021/acs.chemrev.8b00051] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Advances in carbohydrate chemistry have certainly made common oligosaccharides much more accessible. However, many current methods still rely heavily upon specialized knowledge of carbohydrate chemistry. The application of automated technologies to chemical and life science applications such as genomics and proteomics represents a vibrant field. These automated technologies also present opportunities for their application to organic synthesis, including that of the synthesis of oligosaccharides. However, application of automated methods to the synthesis of carbohydrates is an underdeveloped area as compared to other classes of biomolecules. The overarching goal of this review article is to present the advances that have been made at the interface of carbohydrate chemistry and automated technology.
Collapse
Affiliation(s)
- Matteo Panza
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Salvatore G. Pistorio
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
21
|
Poulsen LT, Heuckendorff M, Jensen HH. Effect of 2- O-Benzoyl para-Substituents on Glycosylation Rates. ACS OMEGA 2018; 3:7117-7123. [PMID: 31458873 PMCID: PMC6644881 DOI: 10.1021/acsomega.8b00880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/08/2018] [Indexed: 05/06/2023]
Abstract
From a series of competition experiments, we have explored the degree to which various para-substituents (CN, Br, H, OMe, pyrrolidino) of a 2-O-benzoyl functionalized glucosyl donor of the thioglycoside type affect the rate of glycosylation under N-iodosuccinimide/triflic acid activation. As expected, electron-withdrawing groups were found to decrease the rate of glycosylation, whereas electron-donating groups resulted in the opposite outcome, underscoring the influence on the reaction rate exerted by a participating group. On this basis, a Hammett linear free-energy relationship was established (R 2 = 0.979, ρ = 0.6), offering fundamental insight into the magnitude of anchimeric assistance in glycosylation chemistry.
Collapse
|
22
|
Poulsen LT, Heuckendorff M, Jensen HH. On the generality of the superarmament of glycosyl donors. Org Biomol Chem 2018. [DOI: 10.1039/c7ob02966g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We establish that the electronic superarmament of 2-OBz thioglucoside glycosyl donors under NIS/TfOH activation is not a general phenomenon.
Collapse
|
23
|
Angles d’Ortoli T, Hamark C, Widmalm G. Structure–Reactivity Relationships of Conformationally Armed Disaccharide Donors and Their Use in the Synthesis of a Hexasaccharide Related to the Capsular Polysaccharide from Streptococcus pneumoniae Type 37. J Org Chem 2017; 82:8123-8140. [DOI: 10.1021/acs.joc.7b01264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Thibault Angles d’Ortoli
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Christoffer Hamark
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
24
|
Abronina PI, Burygin GL, Kononov LO. Syntheses of O-antigen polysaccharide fragments of nitrogen-fixing rhizobacteria of the genus Azospirillum. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1472-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
25
|
Zhou J, Lv S, Zhang D, Xia F, Hu W. Deactivating Influence of 3-O-Glycosyl Substituent on Anomeric Reactivity of Thiomannoside Observed in Oligomannoside Synthesis. J Org Chem 2017; 82:2599-2621. [DOI: 10.1021/acs.joc.6b03017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jun Zhou
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Siying Lv
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dan Zhang
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Fei Xia
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wenhao Hu
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
26
|
Bandara MD, Yasomanee JP, Rath NP, Pedersen CM, Bols M, Demchenko AV. Conformationally superarmed S-ethyl glycosyl donors as effective building blocks for chemoselective oligosaccharide synthesis in one pot. Org Biomol Chem 2017; 15:559-563. [PMID: 27942674 PMCID: PMC5496005 DOI: 10.1039/c6ob02498j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new series of superarmed glycosyl donors has been investigated. It was demonstrated that the S-ethyl leaving group allows for high reactivity, which is much higher than that of equally equipped S-phenyl glycosyl donors that were previously investigated by our groups. The superarmed S-ethyl glycosyl donors equipped with a 2-O-benzoyl group gave complete β-stereoselectivity. Utility of the new glycosyl donors has been demonstrated in a one-pot one-addition oligosaccharide synthesis with all of the reaction components present from the beginning.
Collapse
Affiliation(s)
- Mithila D Bandara
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| | - Jagodige P Yasomanee
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| | - Nigam P Rath
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| | | | - Mikael Bols
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| |
Collapse
|
27
|
Bols M, Pedersen CM. Silyl-protective groups influencing the reactivity and selectivity in glycosylations. Beilstein J Org Chem 2017; 13:93-105. [PMID: 28228850 PMCID: PMC5301963 DOI: 10.3762/bjoc.13.12] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/23/2016] [Indexed: 11/26/2022] Open
Abstract
Silyl groups such as TBDPS, TBDMS, TIPS or TMS are well-known and widely used alcohol protective groups in organic chemistry. Cyclic silylene protective groups are also becoming increasingly popular. In carbohydrate chemistry silyl protective groups have frequently been used primarily as an orthogonal protective group to the more commonly used acyl and benzyl protective groups. However, silyl protective groups have significantly different electronic and steric requirements than acyl and alkyl protective groups, which particularly becomes important when two or more neighboring alcohols are silyl protected. Within the last decade polysilylated glycosyl donors have been found to have unusual properties such as high (or low) reactivity or high stereoselectivity. This mini review will summarize these findings.
Collapse
Affiliation(s)
- Mikael Bols
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | |
Collapse
|
28
|
Abstract
The development of glycobiology relies on the sources of particular oligosaccharides in their purest forms. As the isolation of the oligosaccharide structures from natural sources is not a reliable option for providing samples with homogeneity, chemical means become pertinent. The growing demand for diverse oligosaccharide structures has prompted the advancement of chemical strategies to stitch sugar molecules with precise stereo- and regioselectivity through the formation of glycosidic bonds. This Review will focus on the key developments towards chemical O-glycosylations in the current century. Synthesis of novel glycosyl donors and acceptors and their unique activation for successful glycosylation are discussed. This Review concludes with a summary of recent developments and comments on future prospects.
Collapse
Affiliation(s)
- Rituparna Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| | - Balaram Mukhopadhyay
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| |
Collapse
|
29
|
Zhao YT, Huang LB, Li Q, Li ZJ. A mild method for regioselective de-O-methylation of saccharides by Co2(CO)8/Et3SiH/CO system. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Abstract
A total of 14 ocotillol-type ginsenosides were conveniently synthesized employing glycosylation of ocotillol sapogenin derivatives with glucosyl ortho-alkynylbenzoate donors under the promotion of a gold(I) catalyst as the key step. Relying on a rational protecting group strategy and the unexpected regioselectivity of the glycosylation of the 3,25-diol sapogenins (2a/2b, 5a/5b) for the tertiary 25-OH, mono 3-O-glucosyl ocotillol-PPD, 6-O-glucosyl ocotillol-PPT, 25-O-glucosyl ocotillol-PPD/PPT and 3,25-di-O-glucosyl ocotillol-PPD/PPT ginsenosides were prepared in which the configuration at the C-24 is either R or S.
Collapse
Affiliation(s)
- Renzeng Shen
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Xin Cao
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Stephane Laval
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Jiansong Sun
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University , 437 West Beijing Road, Nanchang, 330027, China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
31
|
Krasnova L, Wong CH. Understanding the Chemistry and Biology of Glycosylation with Glycan Synthesis. Annu Rev Biochem 2016; 85:599-630. [DOI: 10.1146/annurev-biochem-060614-034420] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037;
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037;
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
32
|
Marković D, Tchawou WA, Novosjolova I, Laclef S, Stepanovs D, Turks M, Vogel P. Synthesis and Applications of Silyl 2-Methylprop-2-ene-1-sulfinates in Preparative Silylation and GC-Derivatization Reactions of Polyols and Carbohydrates. Chemistry 2016; 22:4196-205. [DOI: 10.1002/chem.201504380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Dean Marković
- Laboratoire de glycochimie et de synthèse asymétrique; Swiss Federal Institute of Technology of Lausanne (EPFL); Lausanne 1015 Switzerland), Fax: (+41) 21-693-93-55
- Chemistry Department; University of Osijek; Osijek Ulica cara Hadrijana 8A Croatia 31000
- Department of Biotechnology; University of Rijeka; Radmile Matejčić 2 51000 Rijeka Croatia
| | - Wandji Augustin Tchawou
- Laboratoire de glycochimie et de synthèse asymétrique; Swiss Federal Institute of Technology of Lausanne (EPFL); Lausanne 1015 Switzerland), Fax: (+41) 21-693-93-55
| | - Irina Novosjolova
- Faculty of Materials Science and Applied Chemistry; Riga Technical University; P. Valdena Str. 3 Riga 1007 Latvia
| | - Sylvain Laclef
- Laboratoire de glycochimie et de synthèse asymétrique; Swiss Federal Institute of Technology of Lausanne (EPFL); Lausanne 1015 Switzerland), Fax: (+41) 21-693-93-55
| | - Dmitrijs Stepanovs
- Faculty of Materials Science and Applied Chemistry; Riga Technical University; P. Valdena Str. 3 Riga 1007 Latvia
- Latvian Institute of Organic Synthesis; Aizkraukles Str. 21 Riga 1006 Latvia
| | - Māris Turks
- Faculty of Materials Science and Applied Chemistry; Riga Technical University; P. Valdena Str. 3 Riga 1007 Latvia
| | - Pierre Vogel
- Laboratoire de glycochimie et de synthèse asymétrique; Swiss Federal Institute of Technology of Lausanne (EPFL); Lausanne 1015 Switzerland), Fax: (+41) 21-693-93-55
| |
Collapse
|
33
|
Christensen HM, Oscarson S, Jensen HH. Common side reactions of the glycosyl donor in chemical glycosylation. Carbohydr Res 2015; 408:51-95. [DOI: 10.1016/j.carres.2015.02.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/12/2015] [Accepted: 02/18/2015] [Indexed: 12/13/2022]
|
34
|
Frihed TG, Bols M, Pedersen CM. Mechanisms of Glycosylation Reactions Studied by Low-Temperature Nuclear Magnetic Resonance. Chem Rev 2015; 115:4963-5013. [DOI: 10.1021/cr500434x] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
35
|
Bohé L, Crich D. A propos of glycosyl cations and the mechanism of chemical glycosylation; the current state of the art. Carbohydr Res 2015; 403:48-59. [PMID: 25108484 PMCID: PMC4281519 DOI: 10.1016/j.carres.2014.06.020] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 12/23/2022]
Abstract
An overview of recent advances in glycosylation with particular emphasis on mechanism is presented. The mounting evidence for both the existence of glycosyl oxocarbenium ions as fleeting intermediates in some reactions, and the crucial role of the associated counterion in others is discussed. The extremes of the SN1 and SN2 manifolds for the glycosylation reaction are bridged by a continuum of mechanisms in which it appears likely that most examples are located.
Collapse
Affiliation(s)
- Luis Bohé
- Centre de Recherche de Gif, CNRS, Institut de Chimie des Substances Naturelles, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA.
| |
Collapse
|
36
|
Ranade SC, Demchenko AV. Glycosyl alkoxythioimidates as building blocks for glycosylation: a reactivity study. Carbohydr Res 2014; 403:115-22. [PMID: 25043398 DOI: 10.1016/j.carres.2014.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/16/2014] [Accepted: 06/22/2014] [Indexed: 12/13/2022]
Abstract
Structural modifications of the leaving group of S-glycosyl O-methyl phenylcarbamothioates (SNea) involving change of substituents that express different electronic effects led to a better understanding of how the reactivity of these glycosyl donors can be modified by changing the structure of their leaving groups. Mechanistic studies involving the isolation of departed aglycones were indicative of the direct activation of both p-methoxy-SNea and p-nitro-SNea leaving groups via the anomeric sulfur rather than the remote nitrogen atom. The presence of an electron donating substituent (p-methoxy) has a strong effect on the nucleophilicity of the sulfur atom that becomes more susceptible toward the attack of thiophilic reagents, in particular. This key observation allowed to differentiate the reactivity levels of p-methoxy-SNea versus p-nitro-SNea and even unmodified SNea leaving groups. The reactivity difference observed in the series of SNea leaving groups is sufficient to be exploited in expeditious oligosaccharide synthesis via selective activation strategies.
Collapse
Affiliation(s)
- Sneha C Ranade
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, St. Louis, MO 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, St. Louis, MO 63121, USA.
| |
Collapse
|
37
|
Phanumartwiwath A, Hornsby TW, Jamalis J, Bailey CD, Willis CL. Silyl Migrations in d-Xylose Derivatives: Total Synthesis of a Marine Quinoline Alkaloid. Org Lett 2013; 15:5734-7. [DOI: 10.1021/ol402760p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Thomas W. Hornsby
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | | | | | - Christine L. Willis
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|
38
|
Tikad A, Vincent SP. Constrained 3,6-Anhydro-Heptosides: Synthesis by a DAST-Induced Debenzylative Reaction, and Reactivity Profile. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Heuckendorff M, Premathilake HD, Pornsuriyasak P, Madsen AØ, Pedersen CM, Bols M, Demchenko AV. Superarming of glycosyl donors by combined neighboring and conformational effects. Org Lett 2013; 15:4904-7. [PMID: 24006853 PMCID: PMC3823551 DOI: 10.1021/ol402371b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel glycosyl donor that combines the concepts of both conformational and electronic superarming has been synthesized. The reactivity and selectivity of the donor have been tested in competition experiments.
Collapse
Affiliation(s)
- Mads Heuckendorff
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Hemali D. Premathilake
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| | - Papapida Pornsuriyasak
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| | - Anders Ø. Madsen
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | | | - Mikael Bols
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| |
Collapse
|
40
|
Heuckendorff M, Pedersen CM, Bols M. Conformationally Armed 3,6-Tethered Glycosyl Donors: Synthesis, Conformation, Reactivity, and Selectivity. J Org Chem 2013; 78:7234-48. [DOI: 10.1021/jo4012464] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mads Heuckendorff
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | | | - Mikael Bols
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
41
|
Liang XY, Bin HC, Yang JS. Tuning effect of silyl protecting groups on the glycosylation reactivity of arabinofuranosyl thioglycosides. Org Lett 2013; 15:2834-7. [PMID: 23682928 DOI: 10.1021/ol401166x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The tuning effect of silyl protecting groups on the glycosylation reactivity of arabinofuranosyl phenyl thioglycoside donors is presented. Silyl ethers on the 3-, 5-, and 3,5-positions of the arabinofuranose ring are found to have an arming effect on the donor reactivity, whereas the cyclic 3,5-acetal type protecting groups reduce the reactivity.
Collapse
Affiliation(s)
- Xing-Yong Liang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | | | | |
Collapse
|
42
|
Kraft MB, Martinez Farias MA, Kiessling LL. Synthesis of lipid-linked arabinofuranose donors for glycosyltransferases. J Org Chem 2013; 78:2128-33. [PMID: 23373821 DOI: 10.1021/jo302507p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mycobacteria and corynebacteria use decaprenylphosphoryl-β-D-arabinofuranose (DPA) as a critical cell wall building block. Arabinofuranosyltransferases that process this substrate to mediate cell wall assembly have served as drug targets, but little is known about the substrate specificity of any of these enzymes. To probe substrate recognition of DPA, we developed a general and efficient synthetic route to β-D-arabinofuranosyl phosphodiesters. In this approach, the key glycosyl phosphodiester bond-forming reaction proceeds with high β-selectivity. In addition to its stereoselectivity, our route provides the means to readily access a variety of different lipid analogues, including aliphatic and polyprenyl substrates.
Collapse
Affiliation(s)
- Matthew B Kraft
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|
43
|
Ranade SC, Demchenko AV. Mechanism of Chemical Glycosylation: Focus on the Mode of Activation and Departure of Anomeric Leaving Groups. J Carbohydr Chem 2013. [DOI: 10.1080/07328303.2012.749264] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sneha C. Ranade
- a Department of Chemistry and Biochemistry , University of Missouri , St. Louis , MO , 63121 , USA
| | - Alexei V. Demchenko
- a Department of Chemistry and Biochemistry , University of Missouri , St. Louis , MO , 63121 , USA
| |
Collapse
|
44
|
Heuckendorff M, Pedersen CM, Bols M. Rhamnosylation: diastereoselectivity of conformationally armed donors. J Org Chem 2012; 77:5559-68. [PMID: 22639871 DOI: 10.1021/jo300591k] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The α/β-selectivity of super-armed rhamnosyl donors have been investigated in glycosylation reactions. The solvent was found to have a minor influence, whereas temperature was crucial for the diastereoselectivity. At very low temperature, a modest β-selectivity could be obtained, and increasing temperature gave excellent α-selectivity. The donors were highly reactive, and activation was observed at temperatures as low as -107 °C. Different promoter systems and leaving groups were investigated, and only activation with a heterogeneous catalyst increased the amount of the β-anomer significantly. By introducing an electron-withdrawing nonparticipating group, benzyl sulfonyl, on 2-O, an increase in β-product was observed.
Collapse
Affiliation(s)
- Mads Heuckendorff
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | | | |
Collapse
|
45
|
Furukawa T, Hinou H, Nishimura SI. Strict Stereocontrol by 2,4-O-Di-tert-butylsilylene Group on β-Glucuronylations. Org Lett 2012; 14:2102-5. [DOI: 10.1021/ol300634x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takayuki Furukawa
- Graduate School of Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Graduate School of Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Graduate School of Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
46
|
Kumar R, Whitfield DM. Could Diastereoselectivity in the Presence of O-2 Chiral Nonparticipating Groups Be an Indicator of Glycopyranosyl Oxacarbenium Ions in Glycosylation Reactions? J Org Chem 2012; 77:3724-39. [DOI: 10.1021/jo202563f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Rishi Kumar
- National Research Council, Institute for Biological Sciences, 100 Sussex Drive, Ottawa, Ontario,
Canada K1A 0R6
| | - Dennis M. Whitfield
- National Research Council, Institute for Biological Sciences, 100 Sussex Drive, Ottawa, Ontario,
Canada K1A 0R6
| |
Collapse
|
47
|
Hsu Y, Lu XA, Zulueta MML, Tsai CM, Lin KI, Hung SC, Wong CH. Acyl and Silyl Group Effects in Reactivity-Based One-Pot Glycosylation: Synthesis of Embryonic Stem Cell Surface Carbohydrates Lc4 and IV2Fuc-Lc4. J Am Chem Soc 2012; 134:4549-52. [DOI: 10.1021/ja300284x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yun Hsu
- Genomics Research
Center, Academia Sinica, 128, Section 2,
Academia Road, Taipei
115, Taiwan
- Department
of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu
Road, Hsinchu 300, Taiwan
| | - Xin-An Lu
- Genomics Research
Center, Academia Sinica, 128, Section 2,
Academia Road, Taipei
115, Taiwan
| | - Medel Manuel L. Zulueta
- Genomics Research
Center, Academia Sinica, 128, Section 2,
Academia Road, Taipei
115, Taiwan
| | - Chih-Ming Tsai
- Genomics Research
Center, Academia Sinica, 128, Section 2,
Academia Road, Taipei
115, Taiwan
| | - Kuo-I Lin
- Genomics Research
Center, Academia Sinica, 128, Section 2,
Academia Road, Taipei
115, Taiwan
| | - Shang-Cheng Hung
- Genomics Research
Center, Academia Sinica, 128, Section 2,
Academia Road, Taipei
115, Taiwan
- Department of Applied Chemistry, National Chiao Tung University, 1001, Ta-Hsueh Road,
Hsinchu 300, Taiwan
| | - Chi-Huey Wong
- Genomics Research
Center, Academia Sinica, 128, Section 2,
Academia Road, Taipei
115, Taiwan
| |
Collapse
|
48
|
A potential glucuronate glycosyl donor with 2-O-acyl-6,3-lactone structure: efficient synthesis of glycosaminoglycan disaccharides. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Saha J, Peczuh MW. Expanding the Scope of Aminosugars: Synthesis of 2‐Amino Septanosyl Glycoconjugates Using Septanosyl Fluoride Donors. Chemistry 2011; 17:7357-65. [DOI: 10.1002/chem.201003721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/21/2011] [Indexed: 01/25/2023]
Affiliation(s)
- Jaideep Saha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, U‐3060, Storrs, CT 06269 (USA), Fax: (+1) 860‐486‐2981
| | - Mark W. Peczuh
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, U‐3060, Storrs, CT 06269 (USA), Fax: (+1) 860‐486‐2981
| |
Collapse
|
50
|
Amorim L, Marcelo F, Rousseau C, Nieto L, Jiménez‐Barbero J, Marrot J, Rauter AP, Sollogoub M, Bols M, Blériot Y. Direct Experimental Evidence for the High Chemical Reactivity of α‐ and β‐Xylopyranosides Adopting a
2,5
B
Conformation in Glycosyl Transfer. Chemistry 2011; 17:7345-56. [DOI: 10.1002/chem.201003251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Indexed: 12/12/2022]
Affiliation(s)
- Luis Amorim
- UPMC Univ Paris 06, Institut Parisien de Chimie Moléculaire (UMR 7201), FR 2769, C181, 4 place Jussieu, 75005 Paris (France)
| | - Filipa Marcelo
- UPMC Univ Paris 06, Institut Parisien de Chimie Moléculaire (UMR 7201), FR 2769, C181, 4 place Jussieu, 75005 Paris (France)
- Carbohydrate Chemistry Group, CQB‐FCUL, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, 1749‐016 Lisbon (Portugal)
| | - Cyril Rousseau
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Kbh Ø (Denmark)
- Present address: Université d'Artois, IUT de Béthune, UCCS Artois, UMR 8181, 1230 rue de l'Université, BP 819, 62408 Béthune cedex (France)
| | - Lidia Nieto
- Centro de Investigaciones Biológicas, CSIC, 28040 Madrid (Spain)
| | | | - Jérôme Marrot
- Institut Lavoisier, Université de Versailles‐Saint‐Quentin, UMR 8180, 78035 Versailles (France)
| | - Amélia P. Rauter
- Carbohydrate Chemistry Group, CQB‐FCUL, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, 1749‐016 Lisbon (Portugal)
| | - Matthieu Sollogoub
- UPMC Univ Paris 06, Institut Parisien de Chimie Moléculaire (UMR 7201), FR 2769, C181, 4 place Jussieu, 75005 Paris (France)
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Kbh Ø (Denmark)
| | - Yves Blériot
- UPMC Univ Paris 06, Institut Parisien de Chimie Moléculaire (UMR 7201), FR 2769, C181, 4 place Jussieu, 75005 Paris (France)
- Present address: Université de Poitiers, UMR 6514, Laboratoire “Synthèse et Réactivité des Substances Naturelles”, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex (France)
| |
Collapse
|