1
|
Ywaya DO, Ibrahim H, Friedrich HB, Bala MD, Soobramoney L, Daniels A, Singh M. Chemotherapeutic Activities of New η 6- p-Cymene Ruthenium(II) and Osmium(II) Complexes with Chelating SS and Tridentate SNS Ligands. Molecules 2024; 29:944. [PMID: 38474456 DOI: 10.3390/molecules29050944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
A series of new chelating bidentate (SS) alkylimidazole-2-thione-Ru(II)/Os(II) complexes (3ai, 3aii, 3aiii, 3bii/4aiii, 4bi, 4bii), and the tridentate (SNS) pyridine-2,6-diylimidazole-2-thione-Ru(II)/Os(II) complexes (5bi, 5civ/6bi, 6ci, 6civ) in the forms [MII(cym)(L)Cl]PF6 and [MII(cym)(L)]PF6 (M = Ru or Os, cym = η6-p-cymene, and L = heterocyclic derivatives of thiourea) respectively, were successfully synthesized. Spectroscopic and analytical methods were used to characterize the complexes and their ligands. Solid-state single-crystal X-ray diffraction analyses revealed a "piano-stool" geometry around the Ru(II) or Os(II) centers in the respective complexes. The complexes were investigated for in vitro chemotherapeutic activities against human cervical carcinoma (HeLa) and the non-cancerous cell line (Hek293) using the MTT assay. The compounds 3aii, 5civ, 5bi, 4aiii, 6ci, 6civ, and the reference drug, 5-fluorouracil were found to be selective toward the tumor cells; the compounds 3ai, 3aiii, 3bii, 4bi, 4bii, and 6bi, which were found not to be selective between normal and tumor cell lines. The IC50 value of the tridentate half-sandwich complex 5bi (86 ± 9 μM) showed comparable anti-proliferative activity with the referenced commercial anti-cancer drug, 5-fluorouracil (87 ± 15 μM). The pincer (SNS) osmium complexes 6ci (36 ± 10 μM) and 6civ (40 ± 4 μM) were twice as effective as the reference drug 5-fluorouracil at the respective dose concentrations. However, the analogous pincer (SNS) ruthenium complex 5civ was ineffective and did not show anti-proliferative activity, even at a higher concentration of 147 ± 1 μM. These findings imply that the higher stability of the chelating (SS) and the pincer (SNS) ligand architectures in the complexes improves the biological (anti-proliferative) activity of the complexes by reducing the chance of ligand dissociation under physiological conditions. In general, the pincer (SNS) osmium complexes were found to be more cytotoxic than their ruthenium analogues, suggesting that the anti-proliferative activity of the imidazole-2-thione-Ru/Os complexes depends on the ligand's spatial coordination, the nature of the metal center, and the charge of the metal complex ions.
Collapse
Affiliation(s)
- David O Ywaya
- School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Halliru Ibrahim
- School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Holger B Friedrich
- School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Muhammad D Bala
- School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Lynette Soobramoney
- School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Aliscia Daniels
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
2
|
|
3
|
Dröge F, Noakes FF, Archer SA, Sreedharan S, Raza A, Robertson CC, MacNeil S, Haycock JW, Carson H, Meijer AJHM, Smythe CGW, Bernardino de la Serna J, Dietzek-Ivanšić B, Thomas JA. A Dinuclear Osmium(II) Complex Near-Infrared Nanoscopy Probe for Nuclear DNA. J Am Chem Soc 2021; 143:20442-20453. [PMID: 34808044 DOI: 10.1021/jacs.1c10325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the aim of developing photostable near-infrared cell imaging probes, a convenient route to the synthesis of heteroleptic OsII complexes containing the Os(TAP)2 fragment is reported. This method was used to synthesize the dinuclear OsII complex, [{Os(TAP)2}2tpphz]4+ (where tpphz = tetrapyrido[3,2-a:2',3'-c:3″,2''-h:2‴,3'''-j]phenazine and TAP = 1,4,5,8- tetraazaphenanthrene). Using a combination of resonance Raman and time-resolved absorption spectroscopy, as well as computational studies, the excited state dynamics of the new complex were dissected. These studies revealed that, although the complex has several close lying excited states, its near-infrared, NIR, emission (λmax = 780 nm) is due to a low-lying Os → TAP based 3MCLT state. Cell-based studies revealed that unlike its RuII analogue, the new complex is neither cytotoxic nor photocytotoxic. However, as it is highly photostable as well as live-cell permeant and displays NIR luminescence within the biological optical window, its properties make it an ideal probe for optical microscopy, demonstrated by its use as a super-resolution NIR STED probe for nuclear DNA.
Collapse
Affiliation(s)
- Fabian Dröge
- Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany; Institute of Photonic Technology Jena e.V., Albert-Einstein-Straße 9, 07749 Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | - Jorge Bernardino de la Serna
- Central Laser Facility, Rutherford Appleton Laboratory, Research Complex at Harwell, Science and Technology Facilities Council, Harwell-Oxford, Didcot OX11 0QX, United Kingdom; National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany; Institute of Photonic Technology Jena e.V., Albert-Einstein-Straße 9, 07749 Jena, Germany
| | | |
Collapse
|
4
|
Antitumor Immune Response Triggered by Metal-Based Photosensitizers for Photodynamic Therapy: Where Are We? Pharmaceutics 2021; 13:pharmaceutics13111788. [PMID: 34834202 PMCID: PMC8620627 DOI: 10.3390/pharmaceutics13111788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Metal complexes based on transition metals have rich photochemical and photophysical properties that are derived from a variety of excited state electronic configurations triggered by visible and near-infrared light. These properties can be exploited to produce powerful energy and electron transfer processes that can lead to oxygen-(in)dependent photobiological activity. These principles are the basis of photodynamic therapy (PDT), which is a clinically approved treatment that offers a promising, effective, and noninvasive complementary treatment or even an alternative to treat several types of cancers. PDT is based on a reaction involving a photosensitizer (PS), light, and oxygen, which ultimately generates cytotoxic reactive oxygen species (ROS). However, skin photosensitivity, due to the accumulation of PSs in skin cells, has hampered, among other elements, its clinical development and application. Therefore, these is an increasing interest in the use of (metal-based) PSs that are more specific to tumor cells. This may increase efficacy and corollary decrease side-effects. To this end, metal-containing nanoparticles with photosensitizing properties have recently been developed. In addition, several studies have reported that the use of immunogenic/immunomodulatory metal-based nanoparticles increases the antitumor efficacy of immune-checkpoint inhibitor-based immunotherapy mediated by anti-PD-(L)1 or CTLA-4 antibodies. In this review, we discuss the main metal complexes used as PDT PSs. Lastly, we review the preclinical studies associated with metal-based PDT PSs and immunotherapies. This therapeutic association could stimulate PDT.
Collapse
|
5
|
Nabiyeva T, Roufosse B, Odachowski M, Baumgartner J, Marschner C, Verma AK, Blom B. Osmium Arene Germyl, Stannyl, Germanate, and Stannate Complexes as Anticancer Agents. ACS OMEGA 2021; 6:19252-19268. [PMID: 34337263 PMCID: PMC8320079 DOI: 10.1021/acsomega.1c02665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Herein, we describe the synthesis, full spectroscopic characterization, DFT (density functional theory) calculations, and single-crystal X-ray diffraction analyses of a series of osmium arene σ-germyl, germanate, σ-stannyl, and stannate complexes, along with their cytotoxic (anticancer) investigations. The known dimer complexes [OsCl2(η6-C6H6)]2 (1) and [OsCl2(η6-p-cymene)]2 (2) were reacted with PPh3 to form the known mononuclear complex [OsCl2(η6-p-cymene)(PPh3)] (3) and the new complex [OsCl2(η6-C6H6)(PPh3)] (6); complex 3 was reacted with GeCl2·(dioxane) and SnCl2 to afford, by insertion into the Os-Cl bond, the neutral σ-germyl and stannyl complexes [OsCl(η6-p-cymene)(PPh3)(GeCl3)] (7) and [OsCl(η6-p-cymene)(PPh3)(SnCl3)] (11), respectively, as a mixture of enantiomers. Similarly, the reaction of complex 6 with GeCl2·(dioxane) afforded [OsCl(η6-C6H6)(PPh3)(GeCl3)] (9). Complex 2, upon reaction with 1,1-bis(diphenylphosphino)methane (dppm), formed a mixture of [OsCl2(η6-p-cymene)(κ1-dppm)] (4) and [Os(η6-p-cymene)(κ2-dppm)Cl]+Cl- (5) when prepared in acetonitrile and a mixture of 4 and the dinuclear complex [[OsCl2(η6-p-cymene)]2(μ-dppm)] (0) when prepared in dichloromethane. By utilizing either isolated 4 or a mixture of 4 and 5, the synthesis of κ2-dppm germanate and stannate salts, [OsCl(η6-p-cymene)(κ2-dppm)]+GeCl3 - (8) and [OsCl(η6-p-cymene)(κ2-dppm)]+SnCl3 - (10), were accomplished via halide-abstracting reactions with GeCl2·(dioxane) or SnCl2, respectively. All resulting complexes were characterized by means of multinuclear NMR, FT-IR, ESI-MS, and UV/Vis spectroscopy. X-ray diffraction analyses of 4, 8, 9, 10, and 11 were performed and are reported. DFT studies (B3LYP, basis set LANL2DZ for Os, and def2-TZVPP for Sn, Ge, Cl, P, C, and H) were performed on complex 9 and the benzene analogue of complex 11, 11-benzene, to evaluate the structural changes and the effects on the frontier molecular orbitals arising from the substitution of Ge for Sn. Finally, complexes 3 and 7-11 were investigated for potential anticancer activities considering cell cytotoxicity and apoptosis assays against Dalton's lymphoma (DL) and Ehrlich ascites carcinoma (EAC) malignant cancer cell lines. The complexes were also tested against healthy peripheral blood mononuclear cells (PBMCs). All cell lines were also treated with the reference drug cisplatin to draw a comparison with the results obtained from the reported complexes. The study was further corroborated with in silico molecular interaction simulations and a pharmacokinetic study.
Collapse
Affiliation(s)
- Tomiris Nabiyeva
- Maastricht
Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan, 1, P.O.
Box 616, 6200 MD Maastricht, The Netherlands
| | - Basile Roufosse
- Maastricht
Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan, 1, P.O.
Box 616, 6200 MD Maastricht, The Netherlands
| | - Matylda Odachowski
- Maastricht
Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan, 1, P.O.
Box 616, 6200 MD Maastricht, The Netherlands
| | - Judith Baumgartner
- Institut
für Anorganische Chemie, Technische
Universität Graz, Stremayrgasse 9, A-8010 Graz, Austria
| | - Christoph Marschner
- Institut
für Anorganische Chemie, Technische
Universität Graz, Stremayrgasse 9, A-8010 Graz, Austria
| | - Akalesh Kumar Verma
- Department
of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati 781001, India
| | - Burgert Blom
- Maastricht
Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan, 1, P.O.
Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
6
|
Smitten KL, Scattergood PA, Kiker C, Thomas JA, Elliott PIP. Triazole-based osmium(ii) complexes displaying red/near-IR luminescence: antimicrobial activity and super-resolution imaging. Chem Sci 2020; 11:8928-8935. [PMID: 34123147 PMCID: PMC8163367 DOI: 10.1039/d0sc03563g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cellular uptake, luminescence imaging and antimicrobial activity against clinically relevant methicillin-resistant S. aureus (MRSA) bacteria are reported. The osmium(ii) complexes [Os(N^N)3]2+ (N^N = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (1 2+); 1-benzyl-4-(pyrimidin-2-yl)-1,2,3-triazole (2 2+); 1-benzyl-4-(pyrazin-2-yl)-1,2,3-triazole (3 2+)) were prepared and isolated as the chloride salts of their meridional and facial isomers. The complexes display prominent spin-forbidden ground state to triplet metal-to-ligand charge transfer (3MLCT) state absorption bands enabling excitation as low as 600 nm for fac/mer-3 2+ and observation of emission in aqueous solution in the deep-red/near-IR regions of the spectrum. Cellular uptake studies within MRSA cells show antimicrobial activity for 1 2+ and 2 2+ with greater toxicity for the meridional isomers in each case and mer-1 2+ showing the greatest potency (32 μg mL-1 in defined minimal media). Super-resolution imaging experiments demonstrate binding of mer- and fac-1 2+ to bacterial DNA with high Pearson's colocalisation coefficients (up to 0.95 using DAPI). Phototoxicity studies showed the complexes exhibited a higher antimicrobial activity upon irradiation with light.
Collapse
Affiliation(s)
- Kirsty L Smitten
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Paul A Scattergood
- Department of Chemistry & Centre for Functional Materials, University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| | - Charlotte Kiker
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Jim A Thomas
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Paul I P Elliott
- Department of Chemistry & Centre for Functional Materials, University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| |
Collapse
|
7
|
Nabiyeva T, Marschner C, Blom B. Synthesis, structure and anti-cancer activity of osmium complexes bearing π-bound arene substituents and phosphane Co-Ligands: A review. Eur J Med Chem 2020; 201:112483. [PMID: 32592914 DOI: 10.1016/j.ejmech.2020.112483] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 12/24/2022]
Abstract
While many examples of osmium complexes, as anti-cancer agents, have been reported and some reviews have been devoted to this topic, a particularly interesting and synthetically accessible sub-class of these compounds namely those bearing a π- bound arene and phosphane co-ligand have escaped review. These complexes have made a surprisingly late entry in the literature (2005) in terms of anti-cancer investigations. This is somewhat surprising considering the plethora of analogous complexes that have been reported for the lighter analogue, ruthenium. Herein we review all complexes, neutral and ionic, bearing the "(ƞ6-arene)Os(PR3)" moiety focusing on their synthesis, reactivity, structural features (by X-ray diffraction analysis) as well as anti-cancer biological activity. An attempt is made throughout the article to contrast these to each other and to analogous Ru systems, and a full summary of all existing in vitro biological data is presented.
Collapse
Affiliation(s)
- Tomiris Nabiyeva
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands
| | - Christoph Marschner
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010, Graz, Austria
| | - Burgert Blom
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands.
| |
Collapse
|
8
|
Gkika KS, Byrne A, Keyes TE. Mitochondrial targeted osmium polypyridyl probe shows concentration dependent uptake, localisation and mechanism of cell death. Dalton Trans 2020; 48:17461-17471. [PMID: 31513202 DOI: 10.1039/c9dt02967b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A symmetric osmium(ii) [bis-(4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine)] was prepared and conjugated to two mitochondrial-targeting peptide sequences; FrFKFrFK (r = d-arginine). The parent and conjugate complexes showed strong near infra-red emission centred at λmax 745 nm that was modestly oxygen dependent in the case of the parent and oxygen independent in the case of the conjugate, attributed in the latter case, surprisingly, to a shorter emission lifetime of the conjugate compared to the parent. Confocal fluorescence imaging of sub-live HeLa and MCF 7 cells showed the parent complex was cell impermeable whereas the conjugate was rapidly internalised into the cell and distributed in a concentration dependent manner. At concentrations below approximately 30 μmol, the conjugate localised to the mitochondria of both cell types where it was observed to trigger apoptosis induced by the collapse of the mitochondrial membrane potential (MPP). At concentrations exceeding 30 μmol the conjugate was similarly internalised rapidly but distributed throughout the cell, including to the nucleus and nucleolus. At these concentrations, it was observed to precipitate a caspase-dependent apoptotic pathway. The combination of concentration dependent organelle targeting, NIR emission coincident with the biological window, and distribution dependent cytotoxicity offers an interesting approach to theranostics with the possibility of eliciting site dependent therapeutic effect whilst monitoring the therapeutic effect with luminescence imaging.
Collapse
Affiliation(s)
- Karmel Sofia Gkika
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | |
Collapse
|
9
|
Azmanova M, Soldevila-Barreda J, Bani Hani H, Lord RM, Pitto-Barry A, Picksley SM, Barry NPE. Anticancer Activity of Electron-Deficient Metal Complexes against Colorectal Cancer in vitro Models. ChemMedChem 2019; 14:1887-1893. [PMID: 31545555 DOI: 10.1002/cmdc.201900528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/17/2019] [Indexed: 11/12/2022]
Abstract
An evaluation of the in vitro cytotoxicity of nine electron-deficient half-sandwich metal complexes towards two colorectal cancer cell lines (HCT116 p53+/+, HCT116 p53-/-) and one normal prostate cell line (PNT2) is presented herein. Three complexes were found to be equally cytotoxic towards both colorectal cancer cell lines, suggesting a p53-independent mechanism of action. These complexes are 12 to 34× more potent than cisplatin against HCT116 p53+/+ and HCT116 p53-/- cells. Furthermore, they were found to exhibit little or no cytotoxicity towards PNT2 normal cells, with selectivity ratios greater than 50. To gain an insight into the potential mechanisms of action of the most active compounds, their effects on the expression levels of a panel of genes were measured using qRT-PCR against treated HCT116 p53+/+ and HCT116 p53-/- cells, and cell-cycle analysis was carried out.
Collapse
Affiliation(s)
- Maria Azmanova
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
| | - Joan Soldevila-Barreda
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
| | - Hira Bani Hani
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
| | - Rianne M Lord
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
| | - Anaïs Pitto-Barry
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
| | - Steven M Picksley
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
| | - Nicolas P E Barry
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
| |
Collapse
|
10
|
Wang X, Sun Z. Understanding PIM-1 kinase inhibitor interactions with free energy simulation. Phys Chem Chem Phys 2019; 21:7544-7558. [PMID: 30895980 DOI: 10.1039/c9cp00070d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The proviral integration site of the Moloney leukemia virus (PIM) family includes three homologous members. PIM-1 kinase is an important target in effective therapeutic interventions of lymphomas, prostate cancer and leukemia. In the current work, we performed free energy calculations to calculate the binding affinities of several inhibitors targeting this protein. The alchemical method with integration and perturbation-based estimators and the end-point methods were compared. The computational results indicated that the alchemical method can accurately predict the binding affinities, while the end-point methods give relatively unreliable predictions. Decomposing the free energy difference into enthalpic and entropic components with MBAR reweighting enabled us to investigate the detailed thermodynamic parameters with which the entropy-enthalpy compensation in this protein-ligand binding case is identified. We then studied the conformational ensemble, and the important protein-ligand interactions were identified. The current work sheds light on the understanding of the PIM-1-kinase-inhibitor interactions at the atomic level and will be useful in the further development of potential drugs.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | | |
Collapse
|
11
|
Yang G, Wang W, Mok SWF, Wu C, Law BYK, Miao X, Wu K, Zhong H, Wong C, Wong VKW, Ma D, Leung C. Selective Inhibition of Lysine‐Specific Demethylase 5A (KDM5A) Using a Rhodium(III) Complex for Triple‐Negative Breast Cancer Therapy. Angew Chem Int Ed Engl 2018; 57:13091-13095. [DOI: 10.1002/anie.201807305] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Guan‐Jun Yang
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| | - Wanhe Wang
- Department of ChemistryHong Kong Baptist University Kowloon Tong, Hong Kong China
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology, Avenida Wai Long Taipa, Macao China
| | - Chun Wu
- Department of ChemistryHong Kong Baptist University Kowloon Tong, Hong Kong China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology, Avenida Wai Long Taipa, Macao China
| | - Xiang‐Min Miao
- School of Life ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Ke‐Jia Wu
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| | - Hai‐Jing Zhong
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| | - Chun‐Yuen Wong
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue Hong Kong SAR P. R. China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology, Avenida Wai Long Taipa, Macao China
| | - Dik‐Lung Ma
- Department of ChemistryHong Kong Baptist University Kowloon Tong, Hong Kong China
| | - Chung‐Hang Leung
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| |
Collapse
|
12
|
Sharma V, Pant D. Biocompatible metal decontamination from soil using Ageratum conyzoides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22294-22307. [PMID: 29808403 DOI: 10.1007/s11356-018-2343-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Metal pollution in soil is a serious problem among waste landfill sites and associated environment all over the globe. Amelioration of contaminated soil by plant bioaccumulation is an important strategy to protect the soil environment. Ageratum conyzoides is a common weed species that can grow easily in any contaminating site and bioaccumulate heavy metals present in the e-waste dumping/recycling sites as a natural scavenger. Soil selected for the study was contaminated with waste cathode ray tube (CRT) and printed circuit board (PCB) powder in the concentration range of 1-10 g/kg. Soil decontamination was achieved by using weed plants with ethylene diamine tetraacetic acid (EDTA, 0.1 g/kg) and kinetin (100 μM) combination in pot experiments. Fe, Mn, Zn, and Cu accumulation was found to be highest in leaves (6.51-38.58; 0.14-73.12; 5.24-269.07; 9.38-116.59%); Pb and Cr in stem (22.83-113.41; 21.05-500%), respectively, as compared with blank. Ion chromatography was used as a tool for the measurement of essential ions present in plant under different conditions. Plants showed better growth in terms of shoot, root length, biomass weight, and chlorophyll content with the proposed combination. EDTA allows the metals available for the accumulation through possible complexation. Also, the compatibility of kinetin to manage stress in plant is found to be enhanced in the presence of EDTA due to possible π-π interaction. Metal stress condition causes the deficiency of essential ions in the plants thereby disturbing its biochemistry and results in its eventual death. EDTA-kinetin hybrid treatment was found to be compatible for metal decontamination from soil, its detoxification in plants by changing its environment and restoring the essential ions for the survival of plant.
Collapse
Affiliation(s)
- Virbala Sharma
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India
| | - Deepak Pant
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India.
| |
Collapse
|
13
|
Yang G, Wang W, Mok SWF, Wu C, Law BYK, Miao X, Wu K, Zhong H, Wong C, Wong VKW, Ma D, Leung C. Selective Inhibition of Lysine‐Specific Demethylase 5A (KDM5A) Using a Rhodium(III) Complex for Triple‐Negative Breast Cancer Therapy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guan‐Jun Yang
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| | - Wanhe Wang
- Department of ChemistryHong Kong Baptist University Kowloon Tong, Hong Kong China
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology, Avenida Wai Long Taipa, Macao China
| | - Chun Wu
- Department of ChemistryHong Kong Baptist University Kowloon Tong, Hong Kong China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology, Avenida Wai Long Taipa, Macao China
| | - Xiang‐Min Miao
- School of Life ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Ke‐Jia Wu
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| | - Hai‐Jing Zhong
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| | - Chun‐Yuen Wong
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue Hong Kong SAR P. R. China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology, Avenida Wai Long Taipa, Macao China
| | - Dik‐Lung Ma
- Department of ChemistryHong Kong Baptist University Kowloon Tong, Hong Kong China
| | - Chung‐Hang Leung
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese MedicineUniversity of Macau Macao China
| |
Collapse
|
14
|
|
15
|
Abstract
A key challenge in chemical biology is to identify small molecule regulators for every single protein. However, protein surfaces are notoriously difficult to recognise with synthetic molecules, often having large flat surfaces that are poorly matched to traditional small molecules. In the surface mimetic approach, a supramolecular scaffold is used to project recognition groups in such a manner as to make multivalent non-covalent contacts over a large area of protein surface. Metal based supramolecular scaffolds offer unique advantages over conventional organic molecules for protein binding, including greater stereochemical and geometrical diversity conferred through the metal centre and the potential for direct assessment of binding properties and even visualisation in cells without recourse to further functionalisation. This feature article will highlight the current state of the art in protein surface recognition using metal complexes as surface mimetics.
Collapse
Affiliation(s)
- Sarah H Hewitt
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
16
|
Zhang P, Huang H. Future potential of osmium complexes as anticancer drug candidates, photosensitizers and organelle-targeted probes. Dalton Trans 2018; 47:14841-14854. [DOI: 10.1039/c8dt03432j] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we summarize recent progress in the design and application of innovative osmium compounds as anticancer agents with diverse modes of action, as organelle-targeted imaging probes and photosensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huaiyi Huang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
17
|
Zhang J, Pitto-Barry A, Shang L, Barry NPE. Anti-inflammatory activity of electron-deficient organometallics. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170786. [PMID: 29291071 PMCID: PMC5717645 DOI: 10.1098/rsos.170786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/26/2017] [Indexed: 05/14/2023]
Abstract
We report an evaluation of the cytotoxicity of a series of electron-deficient (16-electron) half-sandwich precious metal complexes of ruthenium, osmium and iridium ([Os/Ru(η6-p-cymene)(1,2-dicarba-closo-dodecarborane-1,2-dithiolato)] (1/2), [Ir(η5-pentamethylcyclopentadiene)(1,2-dicarba-closo-dodecarborane-1,2-dithiolato)] (3), [Os/Ru(η6-p-cymene)(benzene-1,2-dithiolato)] (4/5) and [Ir(η5-pentamethylcyclopentadiene)(benzene-1,2-dithiolato)] (6)) towards RAW 264.7 murine macrophages and MRC-5 fibroblast cells. Complexes 3 and 6 were found to be non-cytotoxic. The anti-inflammatory activity of 1-6 was evaluated in both cell lines after nitric oxide (NO) production and inflammation response induced by bacterial endotoxin lipopolysaccharide (LPS) as the stimulus. All metal complexes were shown to exhibit dose-dependent inhibitory effects on LPS-induced NO production on both cell lines. Remarkably, the two iridium complexes 3 and 6 trigger a full anti-inflammatory response against LPS-induced NO production, which opens up new avenues for the development of non-cytotoxic anti-inflammatory drug candidates with distinct structures and solution chemistry from that of organic drugs, and as such with potential novel mechanisms of action.
Collapse
Affiliation(s)
| | | | - Lijun Shang
- Authors for correspondence: Lijun Shang e-mail:
| | | |
Collapse
|
18
|
González-Fernández R, Crochet P, Cadierno V, Menéndez MI, López R. Phosphinous Acid-Assisted Hydration of Nitriles: Understanding the Controversial Reactivity of Osmium and Ruthenium Catalysts. Chemistry 2017; 23:15210-15221. [DOI: 10.1002/chem.201703481] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Rebeca González-Fernández
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), and Departamento de Química Orgánica e Inorgánica; Universidad de Oviedo; Julián Clavería 8 33006 Oviedo Spain
| | - Pascale Crochet
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), and Departamento de Química Orgánica e Inorgánica; Universidad de Oviedo; Julián Clavería 8 33006 Oviedo Spain
| | - Victorio Cadierno
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), and Departamento de Química Orgánica e Inorgánica; Universidad de Oviedo; Julián Clavería 8 33006 Oviedo Spain
| | - M. Isabel Menéndez
- Departamento de Química Física y Analítica; Universidad de Oviedo; Julián Clavería 8 33006 Oviedo Spain
| | - Ramón López
- Departamento de Química Física y Analítica; Universidad de Oviedo; Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
19
|
Matsheku AC, Chen MYH, Jordaan S, Prince S, Smith GS, Makhubela BC. Acridine-containing RuII
, OsII
, RhIII
and IrIII
Half-Sandwich Complexes: Synthesis, Structure and Antiproliferative Activity. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Asanda C. Matsheku
- Department of Chemistry; University of Johannesburg; PO Box 524 Auckland Park 2006 South Africa
| | - Marian Y.-H. Chen
- Department of Chemistry; University of Cape Town; Rondebosch 7701 Cape Town South Africa
| | - Sandra Jordaan
- Department of Human Biology, Division of Cell Biology; University of the Cape Town; Cape Town South Africa
| | - Sharon Prince
- Department of Human Biology, Division of Cell Biology; University of the Cape Town; Cape Town South Africa
| | - Gregory S. Smith
- Department of Chemistry; University of Cape Town; Rondebosch 7701 Cape Town South Africa
| | | |
Collapse
|
20
|
Yang C, Wang W, Li GD, Zhong HJ, Dong ZZ, Wong CY, Kwong DWJ, Ma DL, Leung CH. Anticancer osmium complex inhibitors of the HIF-1α and p300 protein-protein interaction. Sci Rep 2017; 7:42860. [PMID: 28225008 PMCID: PMC5320473 DOI: 10.1038/srep42860] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
The hypoxia inducible factor (HIF) pathway has been considered to be an attractive anti-cancer target. One strategy to inhibit HIF activity is through the disruption of the HIF-1α–p300 protein-protein interaction. We report herein the identification of an osmium(II) complex as the first metal-based inhibitor of the HIF-1α–p300 interaction. We evaluated the effect of complex 1 on HIF-1α signaling pathway in vitro and in cellulo by using the dual luciferase reporter assay, co-immunoprecipitation assay, and immunoblot assay. Complex 1 exhibited a dose-dependent inhibition of HRE-driven luciferase activity, with an IC50 value of 1.22 μM. Complex 1 interfered with the HIF-1α–p300 interaction as revealed by a dose-dependent reduction of p300 co-precipitated with HIF-1α as the concentration of complex 1 was increased. Complex 1 repressed the phosphorylation of SRC, AKT and STAT3, and had no discernible effect on the activity of NF-κB. We anticipate that complex 1 could be utilized as a promising scaffold for the further development of more potent HIF-1α inhibitors for anti-cancer treatment.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Guo-Dong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhen-Zhen Dong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chun-Yuen Wong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Daniel W J Kwong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
21
|
Zhang P, Wang Y, Qiu K, Zhao Z, Hu R, He C, Zhang Q, Chao H. A NIR phosphorescent osmium(ii) complex as a lysosome tracking reagent and photodynamic therapeutic agent. Chem Commun (Camb) 2017; 53:12341-12344. [DOI: 10.1039/c7cc07776a] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In comparison to a ruthenium(ii) complex, an osmium(ii) complex has great advantages of NIR phosphorescence imaging and NIR photodynamic therapy.
Collapse
Affiliation(s)
- Pingyu Zhang
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Yi Wang
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Kangqiang Qiu
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Zhiqian Zhao
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Rentao Hu
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Chuanxin He
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Qianling Zhang
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Hui Chao
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
22
|
Liu LJ, Wang W, Kang TS, Liang JX, Liu C, Kwong DWJ, Wong VKW, Ma DL, Leung CH. Antagonizing STAT5B dimerization with an osmium complex. Sci Rep 2016; 6:36044. [PMID: 27853239 PMCID: PMC5113070 DOI: 10.1038/srep36044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/11/2016] [Indexed: 12/23/2022] Open
Abstract
Targeting STAT5 is an appealing therapeutic strategy for the treatment of hematologic malignancies and inflammation. Here, we present the novel osmium(II) complex 1 as the first metal-based inhibitor of STAT5B dimerization. Complex 1 exhibited superior inhibitory activity against STAT5B DNA binding compared to STAT5A DNA binding. Moreover, 1 repressed STAT5B transcription and blocked STAT5B dimerization via binding to the STAT5B protein, thereby inhibiting STAT5B translocation to the nucleus. Furthermore, 1 was able to selectively inhibit STAT5B phosphorylation without affecting the expression level of STAT5B.
Collapse
Affiliation(s)
- Li-Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jia-Xin Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chenfu Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Daniel W. J. Kwong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
23
|
Fu Y, Sanchez-Cano C, Soni R, Romero-Canelon I, Hearn JM, Liu Z, Wills M, Sadler PJ. The contrasting catalytic efficiency and cancer cell antiproliferative activity of stereoselective organoruthenium transfer hydrogenation catalysts. Dalton Trans 2016; 45:8367-78. [DOI: 10.1039/c6dt01242f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rapidly growing area of catalytic ruthenium chemistry has provided new complexes with potential as organometallic anticancer agents with novel mechanisms of action.
Collapse
Affiliation(s)
- Ying Fu
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | - Rina Soni
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | - Zhe Liu
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | - Martin Wills
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | |
Collapse
|
24
|
Kuhn PS, Cremer L, Gavriluta A, Jovanović KK, Filipović L, Hummer AA, Büchel GE, Dojčinović BP, Meier SM, Rompel A, Radulović S, Tommasino JB, Luneau D, Arion VB. Heteropentanuclear Oxalato-Bridged nd-4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity. Chemistry 2015; 21:13703-13. [PMID: 26260662 PMCID: PMC4583781 DOI: 10.1002/chem.201502026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Indexed: 11/29/2022]
Abstract
A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d-4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by (13)C NMR spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)](2-) are coordinated to Y(III) and Dy(III), respectively, with formation of [Ln{RuCl3(μ-ox)(NO)}4](5-) (Ln=Y, Dy). While Y(III) is eight-coordinate in 2, Dy(III) is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N(+) ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2-5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d-4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2-5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d-4f metal complexes 6-9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells.
Collapse
Affiliation(s)
- Paul-Steffen Kuhn
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währinger Strasse 42, 1090 Vienna (Austria)
| | - Laura Cremer
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währinger Strasse 42, 1090 Vienna (Austria)
| | - Anatolie Gavriluta
- Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (UMR 5615), Campus de la Doua, 69622 Villeurbanne cedex (France)
| | - Katarina K Jovanović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade (Serbia)
| | - Lana Filipović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade (Serbia)
| | - Alfred A Hummer
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien (Austria)
| | - Gabriel E Büchel
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währinger Strasse 42, 1090 Vienna (Austria)
- Present address: Division for Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)
| | - Biljana P Dojčinović
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Center of Chemistry, Studentski trg 12-16, Belgrade (Serbia)
| | - Samuel M Meier
- Faculty of Chemistry, Institute of Analytical Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna (Austria)
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien (Austria)
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade (Serbia)
| | - Jean Bernard Tommasino
- Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (UMR 5615), Campus de la Doua, 69622 Villeurbanne cedex (France)
| | - Dominique Luneau
- Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (UMR 5615), Campus de la Doua, 69622 Villeurbanne cedex (France).
| | - Vladimir B Arion
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währinger Strasse 42, 1090 Vienna (Austria).
| |
Collapse
|
25
|
Mollin S, Riedel R, Harms K, Meggers E. Octahedral rhodium(III) complexes as kinase inhibitors: Control of the relative stereochemistry with acyclic tridentate ligands. J Inorg Biochem 2015; 148:11-21. [DOI: 10.1016/j.jinorgbio.2015.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 01/29/2023]
|
26
|
Ma DL, Chan DSH, Leung CH. Group 9 organometallic compounds for therapeutic and bioanalytical applications. Acc Chem Res 2014; 47:3614-31. [PMID: 25369127 DOI: 10.1021/ar500310z] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONSPECTUS: Compared with organic small molecules, metal complexes offer several distinct advantages as therapeutic agents or biomolecular probes. Carbon atoms are typically limited to linear, trigonal planar, or tetrahedral geometries, with a maximum of two enantiomers being formed if four different substituents are attached to a single carbon. In contrast, an octahedral metal center with six different substituents can display up to 30 different stereoisomers. While platinum- and ruthenium-based anticancer agents have attracted significant attention in the realm of inorganic medicinal chemistry over the past few decades, group 9 complexes (i.e., iridium and rhodium) have garnered increased attention in therapeutic and bioanalytical applications due to their adjustable reactivity (from kinetically liable to substitutionally inert), high water solubility, stability to air and moisture, and relative ease of synthesis. In this Account, we describe our efforts in the development of group 9 organometallic compounds of general form [M(C(∧)N)2(N(∧)N)] (where M = Ir, Rh) as therapeutic agents against distinct biomolecular targets and as luminescent probes for the construction of oligonucleotide-based assays for a diverse range of analytes. Earlier studies by researchers had focused on organometallic iridium(III) and rhodium(III) half-sandwich complexes that show promising anticancer activity, although their precise mechanisms of action still remain unknown. More recently, kinetically-inert group 9 complexes have arisen as fascinating alternatives to organic small molecules for the specific targeting of enzyme activity. Research in our laboratory has shown that cyclometalated octahedral rhodium(III) complexes were active against Janus kinase 2 (JAK2) or NEDD8-activating enzyme (NAE) activity, or against NO production leading to antivasculogenic activity in cellulo. At the same time, recent interest in the development of small molecules as modulators of protein-protein interactions has stimulated our research group to investigate whether kinetically-inert metal complexes could also be used to target protein-protein interfaces relevant to the pathogenesis of certain diseases. We have recently discovered that cyclometalated octahedral iridium(III) and rhodium(III) complexes bearing C(∧)N ligands based on 2-phenylpyridine could function as modulators of protein-protein interactions, such as TNF-α, STAT3, and mTOR. One rhodium(III) complex antagonized STAT3 activity in vitro and in vivo and displayed potent antitumor activity in a mouse xenograft model of melanoma. Notably, these studies were among the first to demonstrate the direct inhibition of protein-protein interfaces by kinetically-inert group 9 metal complexes. Additionally, we have discovered that group 9 solvato complexes carrying 2-phenylpyridine coligands could function as inhibitors and probes of β-amyloid fibrillogenesis. Meanwhile, the rich photophysical properties of iridium complexes have made them popular tools for the design of luminescent labels and probes. Luminescent iridium(III) complexes benefit from a high quantum yield, responsive emissive properties, long-lived phosphorescence lifetimes, and large Stokes shift values. Over the past few years, our group has developed a number of kinetically-inert, organometallic iridium(III) complexes bearing various C(∧)N and N(∧)N ligands that are selective for G-quadruplex DNA, which is a DNA secondary structure formed from planar stacks of guanine tetrads stabilized by Hoogsteen hydrogen bonding. These complexes were then employed to develop G-quadruplex-based, label-free luminescence switch-on assays for nucleic acids, enzyme activity, small molecules, and metal ions.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Daniel Shiu-Hin Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine Institute
of Chinese Medical Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
27
|
Martin EK, Pagano N, Sherlock ME, Harms K, Meggers E. Synthesis and anticancer activity of ruthenium half-sandwich complexes comprising combined metal centrochirality and planar chirality. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.08.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Yao H, Zhang L, Peng Y, Carroll PJ, Gong L, Meggers E. Novel metal-coordinated 1,10-phenanthroline ligands functionalized with a lactam or imide. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Singh AK, Pandey DS, Xu Q, Braunstein P. Recent advances in supramolecular and biological aspects of arene ruthenium(II) complexes. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.09.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Hanif M, Babak MV, Hartinger CG. Development of anticancer agents: wizardry with osmium. Drug Discov Today 2014; 19:1640-8. [PMID: 24955838 DOI: 10.1016/j.drudis.2014.06.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/22/2014] [Accepted: 06/16/2014] [Indexed: 12/20/2022]
Abstract
Platinum compounds are one of the pillars of modern cancer chemotherapy. The apparent disadvantages of existing chemotherapeutics have led to the development of novel anticancer agents with alternative modes of action. Many complexes of the heavy metal osmium (Os) are potent growth inhibitors of human cancer cells and are active in vivo, often superior or comparable to cisplatin, as the benchmark metal-based anticancer agent, or clinically tested ruthenium (Ru) drug candidates. Depending on the choice of ligand system, osmium compounds exhibit diverse modes of action, including redox activation, DNA targeting or inhibition of protein kinases. In this review, we highlight recent advances in the development of osmium anticancer drug candidates and discuss their cellular mechanisms of action.
Collapse
Affiliation(s)
- Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Maria V Babak
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
31
|
Govender P, Edafe F, Makhubela BC, Dyson PJ, Therrien B, Smith GS. Neutral and cationic osmium(II)-arene metallodendrimers: Synthesis, characterisation and anticancer activity. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Wragg A, Gill MR, Hill CJ, Su X, Meijer AJHM, Smythe C, Thomas JA. Dinuclear osmium(ii) probes for high-resolution visualisation of cellular DNA structure using electron microscopy. Chem Commun (Camb) 2014; 50:14494-7. [DOI: 10.1039/c4cc05547k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dinuclear osmium(ii) complexes are excellent easy-to-handle probes for transmission electron microscopy, facilitating high-resolution intracellular imaging of sub-nuclear structures.
Collapse
Affiliation(s)
- Ashley Wragg
- Department of Chemistry
- University of Sheffield
- Sheffield, S3 7HF UK
| | - Martin R. Gill
- Department of Biomedical Science
- University of Sheffield
- Sheffield, S3 7HF UK
| | | | - Xiaodi Su
- Institute of Material Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- , Singapore 117602
| | | | - Carl Smythe
- Department of Biomedical Science
- University of Sheffield
- Sheffield, S3 7HF UK
| | - Jim A. Thomas
- Department of Chemistry
- University of Sheffield
- Sheffield, S3 7HF UK
| |
Collapse
|
33
|
Khan RA, Yadav S, Hussain Z, Arjmand F, Tabassum S. Carbohydrate linked organotin(IV) complexes as human topoisomerase Iα inhibitor and their antiproliferative effects against the human carcinoma cell line. Dalton Trans 2013; 43:2534-48. [PMID: 24310209 DOI: 10.1039/c3dt51973b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dimethyltin(IV) complexes with ethanolamine (1) and biologically significant N-glycosides (2 and 3) were designed and synthesized. The structural elucidation of complexes 1-3 was done using elemental and spectroscopic methods; in addition, complex 1 was studied by single crystal X-ray diffraction studies. The in vitro DNA binding profile of complexes 2 and 3 was carried out by employing different biophysical methods to ascertain the feasibility of glycosylated complexes. Further, the cleaving ability of 2 and 3 was investigated by the agarose gel electrophoretic mobility assay with supercoiled pBR322 DNA, and demonstrated significantly good nuclease activity. Furthermore, both the complexes exhibited significant inhibitory effects on the catalytic activity of human Topo I at lower concentration than standard drugs. Computer-aided molecular docking techniques were used to ascertain the mode and mechanism of action towards the molecular target DNA and Topo I. The cytotoxicity of 2 and 3 against human hepatoma cancer cells (Huh7) was evaluated, which revealed significant regression in cancerous cells as compared with the standard drug. The antiproliferative activities of 2 and 3 were tested against human hepatoma cancer cells (Huh7), and results showed significantly good activity. Additionally, to validate the remarkable antiproliferative activity of complexes 2 and 3, specific regulatory gene expression (MMP-2 and TGF-β) was obtained by real time PCR.
Collapse
Affiliation(s)
- Rais Ahmad Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh - 202002, India.
| | | | | | | | | |
Collapse
|
34
|
Wähler K, Kräling K, Steuber H, Meggers E. Non-ATP-Mimetic Organometallic Protein Kinase Inhibitor. ChemistryOpen 2013; 2:180-5. [PMID: 24551564 PMCID: PMC3892196 DOI: 10.1002/open.201300031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Indexed: 11/09/2022] Open
Affiliation(s)
- Kathrin Wähler
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 35043 Marburg (Germany) E-mail:
| | - Katja Kräling
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 35043 Marburg (Germany) E-mail:
| | - Holger Steuber
- LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße 35043 Marburg (Germany)
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 35043 Marburg (Germany) E-mail: ; College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 (P. R. China)
| |
Collapse
|
35
|
Ortega-Carrasco E, Lledós A, Maréchal JD. Assessing protein-ligand docking for the binding of organometallic compounds to proteins. J Comput Chem 2013; 35:192-8. [PMID: 24375319 DOI: 10.1002/jcc.23472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/25/2013] [Accepted: 09/29/2013] [Indexed: 01/11/2023]
Abstract
Organometallic compounds are increasingly used as molecular scaffolds in drug development projects; their structural and electronic properties offering novel opportunities in protein-ligand complementarities. Interestingly, while protein-ligand dockings have long become a spearhead in computer assisted drug design, no benchmarking nor optimization have been done for their use with organometallic compounds. Pursuing our efforts to model metal mediated recognition processes, we herein present a systematic study of the capabilities of the program GOLD to predict the interactions of protein with organometallic compounds. The study focuses on inert systems for which no alteration of the first coordination sphere of the metal occurs upon binding. Several scaffolds are used as test systems with different docking schemes and scoring functions. We conclude that ChemScore is the most robust scoring function with ASP and ChemPLP providing with good results too and GoldScore slightly underperforming. This study shows that current state-of-the-art protein-ligand docking techniques are reliable for the docking of inert organometallic compounds binding to protein.
Collapse
|
36
|
Arunesh GM, Shanthi E, Krishna MH, Sooriya Kumar J, Viswanadhan VN. Small molecule inhibitors of PIM1 kinase: July 2009 to February 2013 patent update. Expert Opin Ther Pat 2013; 24:5-17. [PMID: 24131033 DOI: 10.1517/13543776.2014.848196] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The proviral insertion in murine (PIM) lymphoma proteins for which three isoforms, PIM1, PIM2 and PIM3 have been identified, belonging to the family of serine/threonine kinases has emerged recently as an important therapeutic target for the development of selective inhibitors as the new drugs for treating hematological malignancies and solid tumors. The small molecules developed by academia and the pharmaceutical industry have steadily increased in the last few years. Several drug discovery groups focus on treating disorders, such as cancer mediated by PIM kinase, have provided preclinical evidence suggesting that PIM inhibitor provides anti-apoptotic activity, inhibit cell survival and cell proliferation. AREAS COVERED This article discloses recent reviews on research and advances published in the patent literature and scientific publications from July 2009 to February 2013, highlighting discoveries on PIM1 kinase. EXPERT OPINION Several PIM1 kinase small molecule inhibitors are now at the pre-clinical research stage, development and testing. Though nearly 40 patents emerged in the last 3 years, greater efforts towards additional designs and medicinal chemistry continues for developing clinically efficacious PIM1 inhibitors, due to the significance of the target for cancer and the potential for novel and diverse inhibitors as drug candidates.
Collapse
Affiliation(s)
- Gubbi M Arunesh
- Department of Computational Chemistry and Informatics, Jubilant Biosys Ltd, Industrial Suburb , 96, Industrial Suburb, 2nd Stage, Yeshwanthpur, Bangalore 560 022, Karnataka , India +91 80 6662 8908 ; +91 80 66628333 ;
| | | | | | | | | |
Collapse
|
37
|
Büchel G, Gavriluta A, Novak M, Meier S, Jakupec MA, Cuzan O, Turta C, Tommasino JB, Jeanneau E, Novitchi G, Luneau D, Arion VB. Striking difference in antiproliferative activity of ruthenium- and osmium-nitrosyl complexes with azole heterocycles. Inorg Chem 2013; 52:6273-85. [PMID: 23659478 PMCID: PMC3733131 DOI: 10.1021/ic400555k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Indexed: 01/01/2023]
Abstract
Ruthenium nitrosyl complexes of the general formulas (cation)(+)[cis-RuCl4(NO)(Hazole)](-), where (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (Hind) (1c), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (Hpz) (2c), (cation)(+) = (H2bzim)(+), Hazole = 1H-benzimidazole (Hbzim) (3c), (cation)(+) = (H2im)(+), Hazole = 1H-imidazole (Him) (4c) and (cation)(+)[trans-RuCl4(NO)(Hazole)](-), where (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (1t), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (2t), as well as osmium analogues of the general formulas (cation)(+)[cis-OsCl4(NO)(Hazole)](-), where (cation)(+) = (n-Bu4N)(+), Hazole =1H-indazole (5c), 1H-pyrazole (6c), 1H-benzimidazole (7c), 1H-imidazole (8c), (cation)(+) = Na(+); Hazole =1H-indazole (9c), 1H-benzimidazole (10c), (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (11c), (cation)(+) = H2pz(+), Hazole = 1H-pyrazole (12c), (cation)(+) = (H2im)(+), Hazole = 1H-imidazole (13c), and (cation)(+)[trans-OsCl4(NO)(Hazole)](-), where (cation)(+) = n-Bu4N(+), Hazole = 1H-indazole (5t), 1H-pyrazole (6t), (cation)(+) = Na(+), Hazole = 1H-indazole (9t), (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (11t), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (12t), have been synthesized. The compounds have been comprehensively characterized by elemental analysis, ESI mass spectrometry, spectroscopic techniques (IR, UV-vis, 1D and 2D NMR) and X-ray crystallography (1c·CHCl3, 1t·CHCl3, 2t, 3c, 6c, 6t, 8c). The antiproliferative activity of water-soluble compounds (1c, 1t, 3c, 4c and 9c, 9t, 10c, 11c, 11t, 12c, 12t, 13c) in the human cancer cell lines A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon adenocarcinoma) has been assayed. The effects of metal (Ru vs Os), cis/trans isomerism, and azole heterocycle identity on cytotoxic potency and cell line selectivity have been elucidated. Ruthenium complexes (1c, 1t, 3c, and 4c) yielded IC50 values in the low micromolar concentration range. In contrast to most pairs of analogous ruthenium and osmium complexes known, they turned out to be considerably more cytotoxic than chemically related osmium complexes (9c, 9t, 10c, 11c, 11t, 12c, 12t, 13c). The IC50 values of Os/Ru homologs differ by factors (Os/Ru) of up to ~110 and ~410 in CH1 and SW480 cells, respectively. ESI-MS studies revealed that ascorbic acid may activate the ruthenium complexes leading to hydrolysis of one M-Cl bond, whereas the osmium analogues tend to be inert. The interaction with myoglobin suggests nonselective adduct formation; i.e., proteins may act as carriers for these compounds.
Collapse
Affiliation(s)
- Gabriel
E. Büchel
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
- Laboratoire des Multimatériaux
et Interfaces (UMR5615), Université Claude Bernard
Lyon 1, Campus de La Doua, 69622 Villeurbanne, Cedex,
France
| | - Anatolie Gavriluta
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
- Laboratoire des Multimatériaux
et Interfaces (UMR5615), Université Claude Bernard
Lyon 1, Campus de La Doua, 69622 Villeurbanne, Cedex,
France
| | - Maria Novak
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Samuel
M. Meier
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Michael A. Jakupec
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Olesea Cuzan
- Institute of Chemistry, Academy of Sciences of Moldova, Academiei Str. 3, MD-2028
Chisinau, Moldova
| | - Constantin Turta
- Institute of Chemistry, Academy of Sciences of Moldova, Academiei Str. 3, MD-2028
Chisinau, Moldova
| | - Jean-Bernard Tommasino
- Laboratoire des Multimatériaux
et Interfaces (UMR5615), Université Claude Bernard
Lyon 1, Campus de La Doua, 69622 Villeurbanne, Cedex,
France
| | - Erwann Jeanneau
- Laboratoire des Multimatériaux
et Interfaces (UMR5615), Université Claude Bernard
Lyon 1, Campus de La Doua, 69622 Villeurbanne, Cedex,
France
| | - Ghenadie Novitchi
- Laboratoire
National des Champs Magnétiques Intenses-CNRS, Université Joseph Fourier, 25 Avenue des Martyrs,
38042 Grenoble Cedex 9, France
| | - Dominique Luneau
- Laboratoire des Multimatériaux
et Interfaces (UMR5615), Université Claude Bernard
Lyon 1, Campus de La Doua, 69622 Villeurbanne, Cedex,
France
| | - Vladimir B. Arion
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
38
|
Boff B, Gaiddon C, Pfeffer M. Cancer cell cytotoxicity of cyclometalated compounds obtained with osmium(II) complexes. Inorg Chem 2013; 52:2705-15. [PMID: 23427955 DOI: 10.1021/ic302779q] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A library of 29 organoosmium compounds has been built up with known and novel cyclometalated compounds obtained with C-N, N(∧)C(∧)N, and C(∧)N(∧)N ligands. All compounds have been tested for their in vitro cytotoxic properties against A172, a tumor cell line derived from a human glioblastoma, this affording a contrasted picture of the activities of the compounds gathered in this study. Some compounds displayed good to excellent activities, some of them showing IC50 in the nanomolar range. The level of activity was tentatively correlated to several physicochemical properties of the compounds such as their E(0)1/2(Os(III/II)) redox potential and their lipophilicity (log Po/w). A parallel with related ruthenium derivatives was tentatively proposed.
Collapse
Affiliation(s)
- Bastien Boff
- Institut de Chimie, UMR 7177 du CNRS, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | | | | |
Collapse
|
39
|
Barry NPE, Sadler PJ. Exploration of the medical periodic table: towards new targets. Chem Commun (Camb) 2013; 49:5106-31. [DOI: 10.1039/c3cc41143e] [Citation(s) in RCA: 570] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Kilpin KJ, Dyson PJ. Enzyme inhibition by metal complexes: concepts, strategies and applications. Chem Sci 2013. [DOI: 10.1039/c3sc22349c] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
41
|
Ogawa N, Yuki H, Tanaka A. Insights from Pim1 structure for anti-cancer drug design. Expert Opin Drug Discov 2012; 7:1177-92. [DOI: 10.1517/17460441.2012.727394] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Blanck S, Geisselbrecht Y, Kräling K, Middel S, Mietke T, Harms K, Essen LO, Meggers E. Bioactive cyclometalated phthalimides: design, synthesis and kinase inhibition. Dalton Trans 2012; 41:9337-48. [PMID: 22733119 PMCID: PMC4092256 DOI: 10.1039/c2dt30940h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The regioselective cyclometalation of 4-(pyridin-2-yl)phthalimide was exploited for the economical design of organometallic protein kinase inhibitors. 4-(Pyridin-2-yl)phthalimide can be prepared from inexpensive 4-bromophthalimide in just three steps including one Pd-catalyzed Stille cross-coupling. The versatility of this new ligand was demonstrated with the synthesis of ruthenium(II) half-sandwich as well as octahedral ruthenium(II) and iridium(III) complexes. The regioselectivity of the C-H activation in the course of the cyclometalation can be influenced by the reaction conditions and the steric demand of the introduced metal complex fragment. The biological activity of this new class of metalated phthalimides was evaluated by profiling two representative members against a large panel of human protein kinases. A cocrystal structure of one metallo-phthalimide with the protein kinase Pim1 confirmed an ATP-competitive binding with the intended hydrogen bonding between the phthalimide moiety and the hinge region of the ATP-binding site.
Collapse
Affiliation(s)
- Sebastian Blanck
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Yann Geisselbrecht
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Katja Kräling
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Stephen Middel
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Thomas Mietke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Klaus Harms
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Lars-Oliver Essen
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
43
|
Mitra R, Das S, Shinde S, Sinha S, Somasundaram K, Samuelson AG. Anticancer Activity of Hydrogen-Bond-Stabilized Half-Sandwich RuIIComplexes with Heterocycles. Chemistry 2012; 18:12278-91. [DOI: 10.1002/chem.201200938] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Indexed: 12/24/2022]
|
44
|
Parker LJ, Watanabe H, Tsuganezawa K, Tomabechi Y, Handa N, Shirouzu M, Yuki H, Honma T, Ogawa N, Nagano T, Yokoyama S, Tanaka A. Flexibility of the P-loop of Pim-1 kinase: observation of a novel conformation induced by interaction with an inhibitor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:860-6. [PMID: 22869110 PMCID: PMC3412761 DOI: 10.1107/s1744309112027108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/15/2012] [Indexed: 12/27/2022]
Abstract
The serine/threonine kinase Pim-1 is emerging as a promising target for cancer therapeutics. Much attention has recently been focused on identifying potential Pim-1 inhibitor candidates for the treatment of haematopoietic malignancies. The outcome of a rational drug-design project has recently been reported [Nakano et al. (2012), J. Med. Chem. 55, 5151-5156]. The report described the process of optimization of the structure-activity relationship and detailed from a medicinal chemistry perspective the development of a low-potency and nonselective compound initially identified from in silico screening into a potent, selective and metabolically stable Pim-1 inhibitor. Here, the structures of the initial in silico hits are reported and the noteworthy features of the Pim-1 complex structures are described. A particular focus was placed on the rearrangement of the glycine-rich P-loop region that was observed for one of the initial compounds, (Z)-7-(azepan-1-ylmethyl)-2-[(1H-indol-3-yl)methylidene]-6-hydroxy-1-benzofuran-3(2H)-one (compound 1), and was also found in all further derivatives. This novel P-loop conformation, which appears to be stabilized by an additional interaction with the β3 strand located above the binding site, is not usually observed in Pim-1 structures.
Collapse
Affiliation(s)
- Lorien J. Parker
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Hisami Watanabe
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Keiko Tsuganezawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yuri Tomabechi
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Noriko Handa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Hitomi Yuki
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Teruki Honma
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Naoko Ogawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Tetsuo Nagano
- Open Innovation Center for Drug Discovery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akiko Tanaka
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Open Innovation Center for Drug Discovery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
45
|
Hartinger CG, Metzler-Nolte N, Dyson PJ. Challenges and Opportunities in the Development of Organometallic Anticancer Drugs. Organometallics 2012. [DOI: 10.1021/om300373t] [Citation(s) in RCA: 470] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christian G. Hartinger
- School of Chemical Sciences, The University of Auckland, Private
Bag 92019, Auckland 1142, New Zealand
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse, 44801
Bochum, Germany
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie
Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL−BCH, CH-1015 Lausanne,
Switzerland
| |
Collapse
|
46
|
Barry NP, Zava O, Dyson PJ, Therrien B. Encapsulation of inorganic and organic guest molecules into an organometallic hexacationic arene osmium metalla-prism: Synthesis, characterisation and anticancer activity. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2011.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Schmidt AW, Reddy KR, Knölker HJ. Occurrence, Biogenesis, and Synthesis of Biologically Active Carbazole Alkaloids. Chem Rev 2012; 112:3193-328. [PMID: 22480243 DOI: 10.1021/cr200447s] [Citation(s) in RCA: 920] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Arndt W. Schmidt
- Department Chemie, Technische Universität Dresden,
Bergstrasse 66, 01069 Dresden, Germany
| | - Kethiri R. Reddy
- Department Chemie, Technische Universität Dresden,
Bergstrasse 66, 01069 Dresden, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden,
Bergstrasse 66, 01069 Dresden, Germany
| |
Collapse
|
48
|
Abstract
INTRODUCTION Inhibition of protein kinases has become a standard of modern clinical oncology. PIM1 belongs to a novel class of serine/threonine kinases with distinct molecular and biochemical features regulating various oncogenic pathways, for example hypoxia response, cell cycle progression and apoptosis resistance. PIM1 is overexpressed in human cancer diseases and has been associated with metastasis and overall treatment response; in experimental models, inhibition of PIM1 suppressed cell proliferation and migration, induced apoptotic cell death and synergized with other chemotherapeutic agents. AREAS COVERED A PubMed literature search was performed to review the currently available data on PIM1 expression, regulation and targets; its implication in different types of cancer and its impact on prognosis are described. We present ATP-competitive PIM1 inhibitors and the state of the art of PIM1 inhibitor design. Finally, we highlight the development of the unusual class of highly selective and potent organometallic PIM1 inhibitors. EXPERT OPINION As PIM1 possesses oncogenic functions and is overexpressed in various kinds of cancer diseases, its inhibition provides a new option in cancer therapy. Based on the ability of highly selective organometallic PIM1 inhibitors, promising in vivo applicability is expected.
Collapse
Affiliation(s)
- Anna Lena Merkel
- Philipps University Marburg, Institute for Surgical Research, Baldingerstrasse, Marburg, 35033, Germany
| | | | | |
Collapse
|
49
|
The potential of organometallic complexes in medicinal chemistry. Curr Opin Chem Biol 2012; 16:84-91. [PMID: 22366385 DOI: 10.1016/j.cbpa.2012.01.013] [Citation(s) in RCA: 382] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 12/26/2022]
Abstract
Organometallic complexes have unique physico-chemical properties, which have been widely used in homogenous catalysis, for example, for the synthesis of lead compounds and drug candidates. Over the past two decades, a few scientists from all over the world have extended the use of the specific characteristics of these compounds (e.g. structural diversity, possibility of ligand exchange, redox and catalytic properties) for medicinal purposes. The results are stunning. A few organometallic compounds have already entered clinical trials and it can be anticipated that several more will follow in coming years. In this short review, we present the specific advantages that organometallic metal complexes have over purely organic and also coordination compounds. Furthermore, using specific examples, we illustrate how these particular properties can be put to good use in medicinal chemistry. The examples we present have an emphasis on, but are not restricted to, anti-cancer activity.
Collapse
|
50
|
Dieckmann S, Riedel R, Harms K, Meggers E. Pyridocarbazole-Rhodium(III) Complexes as Protein Kinase Inhibitors. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101175] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|