1
|
The Effects of the Metal Ion Substitution into the Active Site of Metalloenzymes: A Theoretical Insight on Some Selected Cases. Catalysts 2020. [DOI: 10.3390/catal10091038] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A large number of enzymes need a metal ion to express their catalytic activity. Among the different roles that metal ions can play in the catalytic event, the most common are their ability to orient the substrate correctly for the reaction, to exchange electrons in redox reactions, to stabilize negative charges. In many reactions catalyzed by metal ions, they behave like the proton, essentially as Lewis acids but are often more effective than the proton because they can be present at high concentrations at neutral pH. In an attempt to adapt to drastic environmental conditions, enzymes can take advantage of the presence of many metal species in addition to those defined as native and still be active. In fact, today we know enzymes that contain essential bulk, trace, and ultra-trace elements. In this work, we report theoretical results obtained for three different enzymes each of which contains different metal ions, trying to highlight any differences in their working mechanism as a function of the replacement of the metal center at the active site.
Collapse
|
2
|
Magalhães RP, Fernandes HS, Sousa SF. Modelling Enzymatic Mechanisms with QM/MM Approaches: Current Status and Future Challenges. Isr J Chem 2020. [DOI: 10.1002/ijch.202000014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rita P. Magalhães
- UCIBIO@REQUIMTE, BioSIMDepartamento de Biomedicina, Faculdade de Medicina da Universidade do Porto Alameda Professor Hernâni Monteiro 4200-319 Porto Portugal
| | - Henriques S. Fernandes
- UCIBIO@REQUIMTE, BioSIMDepartamento de Biomedicina, Faculdade de Medicina da Universidade do Porto Alameda Professor Hernâni Monteiro 4200-319 Porto Portugal
| | - Sérgio F. Sousa
- UCIBIO@REQUIMTE, BioSIMDepartamento de Biomedicina, Faculdade de Medicina da Universidade do Porto Alameda Professor Hernâni Monteiro 4200-319 Porto Portugal
| |
Collapse
|
3
|
Marino T, Prejanò M, Russo N. How Metal Coordination in the Ca-, Ce-, and Eu-Containing Methanol Dehydrogenase Enzymes Can Influence the Catalysis: A Theoretical Point of View. TRANSITION METALS IN COORDINATION ENVIRONMENTS 2019. [DOI: 10.1007/978-3-030-11714-6_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Cerqueira NMFSA, Fernandes PA, Ramos MJ. Protocol for Computational Enzymatic Reactivity Based on Geometry Optimisation. Chemphyschem 2018; 19:669-689. [DOI: 10.1002/cphc.201700339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/22/2017] [Indexed: 01/12/2023]
Affiliation(s)
- N. M. F. S. A. Cerqueira
- REQUIMTE-UCIBIO; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - P. A. Fernandes
- REQUIMTE-UCIBIO; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - M. J. Ramos
- REQUIMTE-UCIBIO; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
| |
Collapse
|
5
|
Prejanò M, Marino T, Russo N. How Can Methanol Dehydrogenase from Methylacidiphilum fumariolicum
Work with the Alien CeIII
Ion in the Active Center? A Theoretical Study. Chemistry 2017; 23:8652-8657. [DOI: 10.1002/chem.201700381] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche; Università della Calabria; 87036 Arcavacata di Rende (CS) Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche; Università della Calabria; 87036 Arcavacata di Rende (CS) Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche; Università della Calabria; 87036 Arcavacata di Rende (CS) Italy
| |
Collapse
|
6
|
Sousa SF, Ribeiro AJM, Neves RPP, Brás NF, Cerqueira NMFSA, Fernandes PA, Ramos MJ. Application of quantum mechanics/molecular mechanics methods in the study of enzymatic reaction mechanisms. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1281] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sérgio Filipe Sousa
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - António J. M. Ribeiro
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Rui P. P. Neves
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Natércia F. Brás
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Nuno M. F. S. A. Cerqueira
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Pedro A. Fernandes
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Maria João Ramos
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| |
Collapse
|
7
|
Abstract
CONSPECTUS: The role dynamics plays in proteins is of intense contemporary interest. Fundamental insights into how dynamics affects reactivity and product distributions will facilitate the design of novel catalysts that can produce high quality compounds that can be employed, for example, as fuels and life saving drugs. We have used molecular dynamics (MD) methods and combined quantum mechanical/molecular mechanical (QM/MM) methods to study a series of proteins either whose substrates are too far away from the catalytic center or whose experimentally resolved substrate binding modes cannot explain the observed product distribution. In particular, we describe studies of farnesyl transferase (FTase) where the farnesyl pyrophosphate (FPP) substrate is ∼8 Å from the zinc-bound peptide in the active site of FTase. Using MD and QM/MM studies, we explain how the FPP substrate spans the gulf between it and the active site, and we have elucidated the nature of the transition state (TS) and offered an alternate explanation of experimentally observed kinetic isotope effects (KIEs). Our second story focuses on the nature of substrate dynamics in the aromatic prenyltransferase (APTase) protein NphB and how substrate dynamics affects the observed product distribution. Through the examples chosen we show the power of MD and QM/MM methods to provide unique insights into how protein substrate dynamics affects catalytic efficiency. We also illustrate how complex these reactions are and highlight the challenges faced when attempting to design de novo catalysts. While the methods used in our previous studies provided useful insights, several clear challenges still remain. In particular, we have utilized a semiempirical QM model (self-consistent charge density functional tight binding, SCC-DFTB) in our QM/MM studies since the problems we were addressing required extensive sampling. For the problems illustrated, this approach performed admirably (we estimate for these systems an uncertainty of ∼2 kcal/mol), but it is still a semiempirical model, and studies of this type would benefit greatly from more accurate ab initio or DFT models. However, the challenge with these methods is to reach the level of sampling needed to study systems where large conformational changes happen in the many nanoseconds to microsecond time regimes. Hence, how to couple expensive and accurate QM methods with sophisticated sampling algorithms is an important future challenge especially when large-scale studies of catalyst design become of interest. The use of MD and QM/MM models to elucidate enzyme catalytic pathways and to design novel catalytic agents is in its infancy but shows tremendous promise. While this Account summarizes where we have been, we also discuss briefly future directions that improve our fundamental ability to understand enzyme catalysis.
Collapse
Affiliation(s)
- Dhruva K. Chakravorty
- Department of Chemistry, 2000 Lakeshore Drive, University of New Orleans, New Orleans, Louisiana 70148, United States
| | - Kenneth M. Merz
- Department of Chemistry and the Department of Biochemistry and Molecular Biology, Michigan State University, 578 S. Shaw Lane, East Lansing Michigan 48824-1322, United States
| |
Collapse
|
8
|
Analyses of cobalt-ligand and potassium-ligand bond lengths in metalloproteins: trends and patterns. J Mol Model 2014; 20:2271. [PMID: 24850495 DOI: 10.1007/s00894-014-2271-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Cobalt and potassium are biologically important metal elements that are present in a large array of proteins. Cobalt is mostly found in vivo associated with a corrin ring, which represents the core of the vitamin B12 molecule. Potassium is the most abundant metal in the cytosol, and it plays a crucial role in maintaining membrane potential as well as correct protein function. Here, we report a thorough analysis of the geometric properties of cobalt and potassium coordination spheres that was performed with high resolution on a representative set of structures from the Protein Data Bank and complemented by quantum mechanical calculations realized at the DFT level of theory (B3LYP/ SDD) on mononuclear model systems. The results allowed us to draw interesting conclusions on the structural characteristics of both Co and K centers, and to evaluate the importance of effects such as their association energies and intrinsic thermodynamic stabilities. Overall, the results obtained provide useful data for enhancing the atomic models normally applied in theoretical and computational studies of Co or K proteins performed at the quantum mechanical level, and for developing molecular mechanical parameters for treating Co or K coordination spheres in molecular mechanics or molecular dynamics studies.
Collapse
|
9
|
Bertini L, Bruschi M, Cosentino U, Greco C, Moro G, Zampella G, De Gioia L. Quantum mechanical methods for the investigation of metalloproteins and related bioinorganic compounds. Methods Mol Biol 2014; 1122:207-68. [PMID: 24639262 DOI: 10.1007/978-1-62703-794-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It is well known that transition metal ions are often bound to proteins, conveying very specific functional properties. In fact, metalloproteins play crucial biological roles in the transport and activation of small molecules such as H2, O2, and N2, as well as in several other biochemical processes. However, even if the presence of transition metals in the active site of proteins allows a very rich biochemistry, the experimental disclosure of structure-activity relationships in metalloproteins is generally difficult exactly because of the presence of transition metals, which are intrinsically characterized by a very versatile and often elusive chemistry. For this reason, computational methods are becoming very popular tools in the characterization of metalloproteins. In particular, since computing power is becoming less and less expensive, due to the continuous technological development of CPUs, the computational tools suited to investigate metalloproteins are becoming more accessible and therefore more commonly used also in molecular biology and biochemistry laboratories. Here, we present the main procedures and computational methods based on quantum mechanics, which are commonly used to study the structural, electronic, and reactivity properties of metalloproteins and related bioinspired compounds, with a specific focus on the practical and technical aspects that must be generally tackled to properly study such biomolecular systems.
Collapse
Affiliation(s)
- Luca Bertini
- Department of Environmental Science, University of Milano-Bicocca, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Janssen FFBJ, Peters LCJM, Schlebos PPJ, Smits JMM, de Gelder R, Rowan AE. Uncorrelated Dynamical Processes in Tetranuclear Carboxylate Clusters Studied by Variable-Temperature 1H NMR Spectroscopy. Inorg Chem 2013; 52:13004-13. [DOI: 10.1021/ic401522v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Femke F. B. J. Janssen
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Laurens C. J. M. Peters
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Paul P. J. Schlebos
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Jan M. M. Smits
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - René de Gelder
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Alan E. Rowan
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Molecular dynamics analysis of a series of 22 potential farnesyltransferase substrates containing a CaaX-motif. J Mol Model 2012; 19:673-88. [DOI: 10.1007/s00894-012-1590-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
12
|
Yang L, Liao RZ, Ding WJ, Liu K, Yu JG, Liu RZ. Why calcium inhibits magnesium-dependent enzyme phosphoserine phosphatase? A theoretical study. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1275-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Yang Y, Wang B, Ucisik MN, Cui G, Fierke CA, Merz KM. Insights into the mechanistic dichotomy of the protein farnesyltransferase peptide substrates CVIM and CVLS. J Am Chem Soc 2012; 134:820-3. [PMID: 22206225 DOI: 10.1021/ja209650h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein farnesyltransferase (FTase) catalyzes farnesylation of a variety of peptide substrates. (3)H α-secondary kinetic isotope effect (α-SKIE) measurements of two peptide substrates, CVIM and CVLS, are significantly different and have been proposed to reflect a rate-limiting S(N)2-like transition state with dissociative characteristics for CVIM, while, due to the absence of an isotope effect, CVLS was proposed to have a rate-limiting peptide conformational change. Potential of mean force quantum mechanical/molecular mechanical studies coupled with umbrella sampling techniques were performed to further probe this mechanistic dichotomy. We observe the experimentally proposed transition state (TS) for CVIM but find that CVLS has a symmetric S(N)2 TS, which is also consistent with the absence of a (3)H α-SKIE. These calculations demonstrate facile substrate-dependent alterations in the transition state structure catalyzed by FTase.
Collapse
Affiliation(s)
- Yue Yang
- Department of Chemistry and the Quantum Theory Project, 2328 New Physics Building, P.O. Box 118435, University of Florida, Gainesville, Florida 32611-8435, USA
| | | | | | | | | | | |
Collapse
|
14
|
Sousa SF, Fernandes PA, Ramos MJ. Computational enzymatic catalysis – clarifying enzymatic mechanisms with the help of computers. Phys Chem Chem Phys 2012; 14:12431-41. [DOI: 10.1039/c2cp41180f] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
Perez MAS, Sousa SF, Oliveira EFT, Fernandes PA, Ramos MJ. Detection of Farnesyltransferase Interface Hot Spots through Computational Alanine Scanning Mutagenesis. J Phys Chem B 2011; 115:15339-54. [DOI: 10.1021/jp205481y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marta A. S. Perez
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Sérgio F. Sousa
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Eduardo F. T. Oliveira
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
16
|
Qiao Y, Gao J, Qiu Y, Wu L, Guo F, Kam-Wing Lo K, Li D. Design, synthesis, and characterization of piperazinedione-based dual protein inhibitors for both farnesyltransferase and geranylgeranyltransferase-I. Eur J Med Chem 2011; 46:2264-73. [DOI: 10.1016/j.ejmech.2011.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/25/2011] [Accepted: 03/02/2011] [Indexed: 01/13/2023]
|
17
|
Tantillo DJ. Biosynthesis via carbocations: theoretical studies on terpene formation. Nat Prod Rep 2011; 28:1035-53. [PMID: 21541432 DOI: 10.1039/c1np00006c] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes applications of quantum chemical calculations in the field of terpene biosynthesis, with a focus on insights into the mechanisms of terpene-forming carbocation rearrangements arising from theoretical studies.
Collapse
|
18
|
Liao RZ, Yu JG, Himo F. Quantum Chemical Modeling of Enzymatic Reactions: The Case of Decarboxylation. J Chem Theory Comput 2011; 7:1494-501. [PMID: 26610140 DOI: 10.1021/ct200031t] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We present a systematic study of the decarboxylation step of the enzyme aspartate decarboxylase with the purpose of assessing the quantum chemical cluster approach for modeling this important class of decarboxylase enzymes. Active site models ranging in size from 27 to 220 atoms are designed, and the barrier and reaction energy of this step are evaluated. To model the enzyme surrounding, homogeneous polarizable medium techniques are used with several dielectric constants. The main conclusion is that when the active site model reaches a certain size, the solvation effects from the surroundings saturate. Similar results have previously been obtained from systematic studies of other classes of enzymes, suggesting that they are of a quite general nature.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.,College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Jian-Guo Yu
- College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
19
|
Hari Narayana Moorthy NS, Sousa SF, Ramos MJ, Fernandes PA. Structural feature study of benzofuran derivatives as farnesyltransferase inhibitors. J Enzyme Inhib Med Chem 2011; 26:777-91. [DOI: 10.3109/14756366.2011.552885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- N. S. Hari Narayana Moorthy
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Sergio F. Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Maria J. Ramos
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| |
Collapse
|
20
|
Metals in proteins: cluster analysis studies. J Mol Model 2010; 17:429-42. [DOI: 10.1007/s00894-010-0733-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 04/23/2010] [Indexed: 01/19/2023]
|
21
|
Gresh N, Audiffren N, Piquemal JP, de Ruyck J, Ledecq M, Wouters J. Analysis of the Interactions Taking Place in the Recognition Site of a Bimetallic Mg(II)−Zn(II) Enzyme, Isopentenyl Diphosphate Isomerase. A Parallel Quantum-Chemical and Polarizable Molecular Mechanics Study. J Phys Chem B 2010; 114:4884-95. [DOI: 10.1021/jp907629k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Nohad Gresh
- Laboratoire de Pharmacochimie Moléculaire et Cellulaire, U648 INSERM, UFR Biomédicale, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Centre Informatique National de l’Enseignement Supérieur, 950, rue de Saint Priest, 34097 Montpellier, France, Laboratoire de Chimie Théorique, Centre National de la Recherche Scientifique, UMR 7616, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie Biologique Structurale, FUNDP, 61 Rue de
| | - Nicole Audiffren
- Laboratoire de Pharmacochimie Moléculaire et Cellulaire, U648 INSERM, UFR Biomédicale, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Centre Informatique National de l’Enseignement Supérieur, 950, rue de Saint Priest, 34097 Montpellier, France, Laboratoire de Chimie Théorique, Centre National de la Recherche Scientifique, UMR 7616, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie Biologique Structurale, FUNDP, 61 Rue de
| | - Jean-Philip Piquemal
- Laboratoire de Pharmacochimie Moléculaire et Cellulaire, U648 INSERM, UFR Biomédicale, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Centre Informatique National de l’Enseignement Supérieur, 950, rue de Saint Priest, 34097 Montpellier, France, Laboratoire de Chimie Théorique, Centre National de la Recherche Scientifique, UMR 7616, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie Biologique Structurale, FUNDP, 61 Rue de
| | - Jerome de Ruyck
- Laboratoire de Pharmacochimie Moléculaire et Cellulaire, U648 INSERM, UFR Biomédicale, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Centre Informatique National de l’Enseignement Supérieur, 950, rue de Saint Priest, 34097 Montpellier, France, Laboratoire de Chimie Théorique, Centre National de la Recherche Scientifique, UMR 7616, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie Biologique Structurale, FUNDP, 61 Rue de
| | - Marie Ledecq
- Laboratoire de Pharmacochimie Moléculaire et Cellulaire, U648 INSERM, UFR Biomédicale, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Centre Informatique National de l’Enseignement Supérieur, 950, rue de Saint Priest, 34097 Montpellier, France, Laboratoire de Chimie Théorique, Centre National de la Recherche Scientifique, UMR 7616, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie Biologique Structurale, FUNDP, 61 Rue de
| | - Johan Wouters
- Laboratoire de Pharmacochimie Moléculaire et Cellulaire, U648 INSERM, UFR Biomédicale, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France, Centre Informatique National de l’Enseignement Supérieur, 950, rue de Saint Priest, 34097 Montpellier, France, Laboratoire de Chimie Théorique, Centre National de la Recherche Scientifique, UMR 7616, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie Biologique Structurale, FUNDP, 61 Rue de
| |
Collapse
|
22
|
Molecular Dynamics Simulations: Difficulties, Solutions and Strategies for Treating Metalloenzymes. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2010. [DOI: 10.1007/978-90-481-3034-4_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Sousa SF, Fernandes PA, Ramos MJ. Gas-Phase Geometry Optimization of Biological Molecules as a Reasonable Alternative to a Continuum Environment Description: Fact, Myth, or Fiction? J Phys Chem A 2009; 113:14231-6. [DOI: 10.1021/jp902213t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sérgio Filipe Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Pedro Alexandrino Fernandes
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Maria João Ramos
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
24
|
Sousa SF, Lopes AB, Fernandes PA, Ramos MJ. The Zinc proteome: a tale of stability and functionality. Dalton Trans 2009:7946-56. [DOI: 10.1039/b904404c] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|