1
|
Jakab K, Melios N, Tsekenis G, Shaban A, Horváth V, Keresztes Z. Comparative Analysis of pH and Target-Induced Conformational Changes of an Oxytetracycline Aptamer in Solution Phase and Surface-Immobilized Form. Biomolecules 2023; 13:1363. [PMID: 37759762 PMCID: PMC10526194 DOI: 10.3390/biom13091363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
To date, numerous aptamer-based biosensing platforms have been developed for sensitive and selective monitoring of target analytes, relying on analyte-induced conformational changes in the aptamer for the quantification of the analyte and the conversion of the binding event into a measurable signal. Despite the impact of these conformational rearrangements on sensor performance, the influence of the environment on the structural conformations of aptamers has rarely been investigated, so the link between parameters directly influencing aptamer folding and the ability of the aptamer to bind to the target analyte remains elusive. Herein, the effect a number of variables have on an aptamer's 3D structure was examined, including the pH of the buffering medium, as well as the anchoring of the aptamer on a solid support, with the use of two label-free techniques. Circular dichroism spectroscopy was utilized to study the conformation of an aptamer in solution along with any changes induced to it by the environment (analyte binding, pH, composition and ionic strength of the buffer solution), while quartz crystal microbalance with dissipation monitoring was employed to investigate the surface-bound aptamer's behavior and performance. Analysis was performed on an aptamer against oxytetracycline, serving as a model system, representative of aptamers selected against small molecule analytes. The obtained results highlight the influence of the environment on the folding and thus analyte-binding capacity of an aptamer and emphasize the need to deploy appropriate surface functionalization protocols in sensor development as a means to minimize the steric obstructions and undesirable interactions of an aptamer with a surface onto which it is tethered.
Collapse
Affiliation(s)
- Kristóf Jakab
- Functional Interfaces Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary;
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary;
| | - Nikitas Melios
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (N.M.); (G.T.)
| | - George Tsekenis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (N.M.); (G.T.)
| | - Abdul Shaban
- Functional Interfaces Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary;
| | - Viola Horváth
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary;
- ELKH-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Zsófia Keresztes
- Functional Interfaces Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary;
| |
Collapse
|
2
|
Luo X, Zhang J, Gao Y, Pan W, Yang Y, Li X, Chen L, Wang C, Wang Y. Emerging roles of i-motif in gene expression and disease treatment. Front Pharmacol 2023; 14:1136251. [PMID: 37021044 PMCID: PMC10067743 DOI: 10.3389/fphar.2023.1136251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
As non-canonical nucleic acid secondary structures consisting of cytosine-rich nucleic acids, i-motifs can form under certain conditions. Several i-motif sequences have been identified in the human genome and play important roles in biological regulatory functions. Due to their physicochemical properties, these i-motif structures have attracted attention and are new targets for drug development. Herein, we reviewed the characteristics and mechanisms of i-motifs located in gene promoters (including c-myc, Bcl-2, VEGF, and telomeres), summarized various small molecule ligands that interact with them, and the possible binding modes between ligands and i-motifs, and described their effects on gene expression. Furthermore, we discussed diseases closely associated with i-motifs. Among these, cancer is closely associated with i-motifs since i-motifs can form in some regions of most oncogenes. Finally, we introduced recent advances in the applications of i-motifs in multiple areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chang Wang
- *Correspondence: Chang Wang, ; Yuqing Wang,
| | | |
Collapse
|
3
|
Gong X, Lin X, Wang S, Ji D, Shu B, Huang ZS, Li D. Regulation of c-Kit gene transcription selectively by bisacridine derivative through promoter dual i-motif structures. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194912. [PMID: 36754277 DOI: 10.1016/j.bbagrm.2023.194912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND c-Kit protein is a signal transduction protein involved in multiple signal pathways, which play an important role in a variety of cellular events such as cell proliferation, apoptosis and differentiation. Special DNA secondary structures on the promoter of c-Kit gene, including G-quadruplex and i-motif structures, could act as "molecular switch" for gene transcriptional regulation, which are potentially important target for development of new anti-cancer drugs. METHODS We screened and evaluated the effect of compounds on c-Kit through several experiments, including SPR, FRET, CD, MST, NMR, dual-luciferase reporter assay, Western blot, qPCR, immunofluorescence, MTT assay, colony formation, cell scrape, cell apoptosis, cell cycle analysis, and transwell assay. RESULTS After extensive screening, we found that bisacridine derivative B05 had selective binding and stabilization to dual i-motif structures on c-Kit gene promoter, which could down-regulate c-Kit gene transcription and translation, resulting in inhibition of cell proliferation and metastasis. B05 exhibited potent anti-tumor activity on HGC-27 cells, and strongly suppressed tumor growth in HGC-27 xenograft mice model. CONCLUSIONS B05 could interact with c-Kit promoter dual i-motif structures with excellent selectivity, which make it possible for selective regulation of gene transcription and translation. B05 could be further developed for selective anti-cancer agent targeting c-Kit promoter i-motifs. GENERAL SIGNIFICANCE i-Motifs on different proto-oncogene promoters are diversified, and especially binding of dual i-motifs on the same promoter simultaneously could significantly down-regulate gene transcription with decreased dosage, and therefore increasing the selectivity. This new strategy shed bight light on development of selective DNA-targeting ligands.
Collapse
Affiliation(s)
- Xue Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Xiaomin Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Siyi Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Dongsheng Ji
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Bing Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China.
| |
Collapse
|
4
|
Ishikawa R, Yasuda M, Sasaki S, Ma Y, Nagasawa K, Tera M. Stabilization of telomeric G-quadruplex by ligand binding increases susceptibility to S1 nuclease. Chem Commun (Camb) 2021; 57:7236-7239. [PMID: 34263271 DOI: 10.1039/d1cc03294a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extent of thermodynamic stabilization of telomeric G-quadruplex (G4) by isomers of G4 ligand L2H2-6OTD, a telomestatin analog, is inversely correlated with susceptibility to S1 nuclease. L2H2-6OTD facilitated the S1 nuclease activities through the base flipping in G4, unlike the conventional role of G4 ligands which inhibit the protein binding to DNA/RNA upon ligand interactions.
Collapse
Affiliation(s)
- Ryo Ishikawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Mizuho Yasuda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Shogo Sasaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Yue Ma
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Masayuki Tera
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
5
|
Sengupta P, Bose D, Chatterjee S. The Molecular Tête-à-Tête between G-Quadruplexes and the i-motif in the Human Genome. Chembiochem 2021; 22:1517-1537. [PMID: 33355980 DOI: 10.1002/cbic.202000703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/16/2020] [Indexed: 12/22/2022]
Abstract
G-Quadruplex (GQ) and i-motif structures are the paradigmatic examples of nonclassical tetrastranded nucleic acids having multifarious biological functions and widespread applications in therapeutics and material science. Recently, tetraplexes emerged as promising anticancer targets due to their structural robustness, gene-regulatory roles, and predominant distribution at specific loci of oncogenes. However, it is arguable whether the i-motif evolves in the complementary single-stranded region after GQ formation in its opposite strand and vice versa. In this review, we address the prerequisites and significance of the simultaneous and/or mutually exclusive formation of GQ and i-motif structures at complementary and sequential positions in duplexes in the cellular milieu. We discussed how their dynamic interplay Sets up cellular homeostasis and exacerbates carcinogenesis. The review gives insights into the spatiotemporal formation of GQ and i-motifs that could be harnessed to design different types of reporter systems and diagnostic platforms for potential bioanalytical and therapeutic intervention.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Debopriya Bose
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| |
Collapse
|
6
|
MD-TSPC4: Computational Method for Predicting the Thermal Stability of I-Motif. Int J Mol Sci 2020; 22:ijms22010061. [PMID: 33374624 PMCID: PMC7793491 DOI: 10.3390/ijms22010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/23/2022] Open
Abstract
I-Motif is a tetrameric cytosine-rich DNA structure with hemi-protonated cytosine: cytosine base pairs. Recent evidence showed that i-motif structures in human cells play regulatory roles in the genome. Therefore, characterization of novel i-motifs and investigation of their functional implication are urgently needed for comprehensive understanding of their roles in gene regulation. However, considering the complications of experimental investigation of i-motifs and the large number of putative i-motifs in the genome, development of an in silico tool for the characterization of i-motifs in the high throughput scale is necessary. We developed a novel computation method, MD-TSPC4, to predict the thermal stability of i-motifs based on molecular modeling and molecular dynamic simulation. By assuming that the flexibility of loops in i-motifs correlated with thermal stability within certain temperature ranges, we evaluated the correlation between the root mean square deviations (RMSDs) of model structures and the thermal stability as the experimentally obtained melting temperature (Tm). Based on this correlation, we propose an equation for Tm prediction from RMSD. We expect this method can be useful for estimating the overall structure and stability of putative i-motifs in the genome, which can be a starting point of further structural and functional studies of i-motifs.
Collapse
|
7
|
Chalikian TV, Liu L, Macgregor RB. Duplex-tetraplex equilibria in guanine- and cytosine-rich DNA. Biophys Chem 2020; 267:106473. [PMID: 33031980 DOI: 10.1016/j.bpc.2020.106473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Noncanonical four-stranded DNA structures, including G-quadruplexes and i-motifs, have been discovered in the cell and are implicated in a variety of genomic regulatory functions. The tendency of a specific guanine- and cytosine-rich region of genomic DNA to adopt a four-stranded conformation depends on its ability to overcome the constraints of duplex base-pairing by undergoing consecutive duplex-to-coil and coil-to-tetraplex transitions. The latter ability is determined by the balance between the free energies of participating ordered and disordered structures. In this review, we present an overview of the literature on the stability of G-quadruplex and i-motif structures and discuss the extent of duplex-tetraplex competition as a function of the sequence context of the DNA and environmental conditions including temperature, pH, salt, molecular crowding, and the presence of G-quadruplex-binding ligands. We outline how the results of in vitro studies can be expanded to understanding duplex-tetraplex equilibria in vivo.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
8
|
Wang B. A New Design for the Fixed Primer Regions in an Oligonucleotide Library for SELEX Aptamer Screening. Front Chem 2020; 8:475. [PMID: 32582641 PMCID: PMC7291870 DOI: 10.3389/fchem.2020.00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
Single-stranded DNA or RNA oligonucleotides, often called aptamers, can bind to a molecular target with both high affinity and selectivity due to their distinct three-dimensional structures. A technique called systematic evolution of ligands by exponential enrichment (SELEX) is used to screen aptamers from a random DNA or RNA pool, or library. The traditionally-designed oligonucleotides in libraries contain a randomized central region along with a fixed primer region at each end for amplifying target-bound central sequences. The single-stranded forward and reverse primer sequences may interfere with target-binding to the central region, resulting in a partial or complete loss of high-affinity aptamers during the SELEX process. To address this issue, researchers have modified the traditional oligonucleotide libraries and developed new types of oligonucleotide libraries; however, these approaches come with various limitations. The author proposes a new design that uses a conformation-changeable sequence as primers, which may open a new avenue for developing an optimized aptamer sequence with both high affinity for, and selective binding to, a particular target via SELEX.
Collapse
Affiliation(s)
- Bin Wang
- Department of Chemistry, Marshall University, Huntington, WV, United States
| |
Collapse
|
9
|
Navarro A, Benabou S, Eritja R, Gargallo R. Influence of pH and a porphyrin ligand on the stability of a G-quadruplex structure within a duplex segment near the promoter region of the SMARCA4 gene. Int J Biol Macromol 2020; 159:383-393. [PMID: 32416304 DOI: 10.1016/j.ijbiomac.2020.05.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 05/09/2020] [Indexed: 12/20/2022]
Abstract
In a previous work, the formation of G-quadruplex structures in a 44-nucleotide long sequence found near the promoter region of the SMARCA4 gene was reported. The central 25 nucleotides were able to fold into an antiparallel G-quadruplex structure, the stability of which was pH-dependent. In the present work, the effect of the presence of lateral nucleotides and the complementary cytosine-rich strand on the stability of this G-quadruplex has been characterized. Moreover, the role of the model ligand TMPyP4 has been studied. Spectroscopic and separation techniques, as well as multivariate data analysis methods, have been used with these purposes. The results have shown that stability of the G-quadruplex as a function of pH or temperature is greatly reduced in the presence of the lateral nucleotides. The influence of the complementary strand does not prevent the formation of the G-quadruplex. Moreover, attempts to modulate the equilibria by an external ligand led us to determine the influence of the TMPyP4 porphyrin on these complex equilibria. This study could eventually help to understand the regulation of SMARCA4 expression.
Collapse
Affiliation(s)
- Alba Navarro
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Spain
| | - Sanae Benabou
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Spain; Université de Bordeaux, CNRS, Inserm, Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Spain.
| |
Collapse
|
10
|
Liu L, Ma C, Wells JW, Chalikian TV. Conformational Preferences of DNA Strands from the Promoter Region of the c-MYC Oncogene. J Phys Chem B 2020; 124:751-762. [PMID: 31923361 DOI: 10.1021/acs.jpcb.9b10518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We characterized the conformational preferences of DNA in an equimolar mixture of complementary G-rich and C-rich strands from the promoter region of the c-MYC oncogene. Our CD-based approach presupposes that the CD spectrum of such a mixture is the spectral sum of the constituent duplex, G-quadruplex, i-motif, and coiled conformations. Spectra were acquired over a range of temperatures at different pHs and concentrations of KCl. Each spectrum was unmixed in terms of the predetermined spectra of the constituent conformational states to obtain the corresponding weighting factors for their fractional contributions to the total population of DNA. The temperature dependences of those contributions then were analyzed in concert according to a model based on a thermodynamic representation of the underlying equilibria. Fitted estimates of the melting enthalpy and temperature obtained for the duplex, G-quadruplex, and i-motif imply that the driving force behind dissociation of the duplex and the concomitant formation of tetrahelical structures is the folding of the G-strand into the G-quadruplex. The liberated C-strand adopts the i-motif conformation at acidic pH and exists in the coiled state at neutral pH. The i-motif alone cannot induce dissociation of the duplex even at pH 5.0, at which it is most stable. Under the physiological conditions of neutral pH, elevated potassium, and room temperature, the duplex and G-quadruplex conformations coexist with the C-strand in the coiled state. Taken together, our results suggest a novel, thermodynamically controlled mechanism for the regulation of gene expression.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - Congshan Ma
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| |
Collapse
|
11
|
Benabou S, Ruckebusch C, Sliwa M, Aviñó A, Eritja R, Gargallo R, de Juan A. Study of conformational transitions of i-motif DNA using time-resolved fluorescence and multivariate analysis methods. Nucleic Acids Res 2020; 47:6590-6605. [PMID: 31199873 PMCID: PMC6649798 DOI: 10.1093/nar/gkz522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/27/2022] Open
Abstract
Recently, the presence of i-motif structures at C-rich sequences in human cells and their regulatory functions have been demonstrated. Despite numerous steady-state studies on i-motif at neutral and slightly acidic pH, the number and nature of conformation of this biological structure are still controversial. In this work, the fluorescence lifetime of labelled molecular beacon i-motif-forming DNA sequences at different pH values is studied. The influence of the nature of bases at the lateral loops and the presence of a Watson–Crick-stabilized hairpin are studied by means of time-correlated single-photon counting technique. This allows characterizing the existence of several conformers for which the fluorophore has lifetimes ranging from picosecond to nanosecond. The information on the existence of different i-motif structures at different pH values has been obtained by the combination of classical global decay fitting of fluorescence traces, which provides lifetimes associated with the events defined by the decay of each sequence and multivariate analysis, such as principal component analysis or multivariate curve resolution based on alternating least squares. Multivariate analysis, which is seldom used for this kind of data, was crucial to explore similarities and differences of behaviour amongst the different DNA sequences and to model the presence and identity of the conformations involved in the pH range of interest. The results point that, for i-motif, the intrachain contact formation and its dissociation show lifetimes ten times faster than for the open form of DNA sequences. They also highlight that the presence of more than one i-motif species for certain DNA sequences according to the length of the sequence and the composition of the bases in the lateral loop.
Collapse
Affiliation(s)
- Sanae Benabou
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Cyril Ruckebusch
- Univ. Lille, CNRS, UMR 8516 - LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille, France
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516 - LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille, France
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Anna de Juan
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
12
|
Chaudhary S, Kaushik M, Ahmed S, Kukreti S. Exploring potential of i-motif DNA formed in the promoter region of GRIN1 gene for nanotechnological applications. RESULTS IN CHEMISTRY 2020. [DOI: 10.1016/j.rechem.2020.100086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
13
|
Abou Assi H, Garavís M, González C, Damha MJ. i-Motif DNA: structural features and significance to cell biology. Nucleic Acids Res 2019; 46:8038-8056. [PMID: 30124962 PMCID: PMC6144788 DOI: 10.1093/nar/gky735] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
The i-motif represents a paradigmatic example of the wide structural versatility of nucleic acids. In remarkable contrast to duplex DNA, i-motifs are four-stranded DNA structures held together by hemi- protonated and intercalated cytosine base pairs (C:C+). First observed 25 years ago, and considered by many as a mere structural oddity, interest in and discussion on the biological role of i-motifs have grown dramatically in recent years. In this review we focus on structural aspects of i-motif formation, the factors leading to its stabilization and recent studies describing the possible role of i-motifs in fundamental biological processes.
Collapse
Affiliation(s)
- Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Miguel Garavís
- Instituto de Química Física 'Rocasolano', CSIC, C/Serrano 119, 28006 Madrid, Spain
| | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, C/Serrano 119, 28006 Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
14
|
Abou Assi H, El-Khoury R, González C, Damha MJ. 2'-Fluoroarabinonucleic acid modification traps G-quadruplex and i-motif structures in human telomeric DNA. Nucleic Acids Res 2017; 45:11535-11546. [PMID: 29036537 PMCID: PMC5714228 DOI: 10.1093/nar/gkx838] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/10/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022] Open
Abstract
Human telomeres and promoter regions of genes fulfill a significant role in cellular aging and cancer. These regions comprise of guanine and cytosine-rich repeats, which under certain conditions can fold into G-quadruplex (G4) and i-motif structures, respectively. Herein, we use UV, circular dichroism and NMR spectroscopy to study several human telomeric sequences and demonstrate that G4/i-motif-duplex interconversion kinetics are slowed down dramatically by 2'-β-fluorination and the presence of G4/i-motif-duplex junctions. NMR-monitored kinetic experiments on 1:1 mixtures of native and modified C- and G-rich human telomeric sequences reveal that strand hybridization kinetics are controlled by G4 or i-motif unfolding. Furthermore, we provide NMR evidence for the formation of a hybrid complex containing G4 and i-motif structures proximal to a duplex DNA segment at neutral pH. While the presence of i-motif and G4 folds may be mutually exclusive in promoter genome sequences, our results suggest that they may co-exist transiently as intermediates in telomeric sequences.
Collapse
Affiliation(s)
- Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Carlos González
- Instituto de Química Física ‘Rocasolano’, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Masad J. Damha
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
15
|
Charnavets T, Nunvar J, Nečasová I, Völker J, Breslauer KJ, Schneider B. Conformational diversity of single-stranded DNA from bacterial repetitive extragenic palindromes: Implications for the DNA recognition elements of transposases. Biopolymers 2016; 103:585-96. [PMID: 25951997 PMCID: PMC4690160 DOI: 10.1002/bip.22666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 01/19/2023]
Abstract
Repetitive extragenic palindrome (REP)—associated tyrosine transposase enzymes (RAYTs) bind REP DNA domains and catalyze their cleavage. Genomic sequence analyses identify potential noncoding REP sequences associated with RAYT-encoding genes. To probe the conformational space of potential RAYT DNA binding domains, we report here spectroscopic and calorimetric measurements that detect and partially characterize the solution conformational heterogeneity of REP oligonucleotides from six bacterial species. Our data reveal most of these REP oligonucleotides adopt multiple conformations, suggesting that RAYTs confront a landscape of potential DNA substrates in dynamic equilibrium that could be selected, enriched, and/or induced via differential binding. Thus, the transposase-bound DNA motif may not be the predominant conformation of the isolated REP domain. Intriguingly, for several REPs, the circular dichroism spectra suggest guanine tetraplexes as potential alternative or additional RAYT recognition elements, an observation consistent with these REP domains being highly nonrandom, with tetraplex-favoring 5′-G and 3′-C-rich segments. In fact, the conformational heterogeneity of REP domains detected and reported here, including the formation of noncanonical DNA secondary structures, may reflect a general feature required for recognition by RAYT transposases. Based on our biophysical data, we propose guanine tetraplexes as an additional DNA recognition element for binding by RAYT transposase enzymes. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 585–596, 2015.
Collapse
Affiliation(s)
- Tatsiana Charnavets
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| | - Jaroslav Nunvar
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| | - Iva Nečasová
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| | - Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Rd., Piscataway, NJ, 08854
| | - Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Rd., Piscataway, NJ, 08854.,Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903
| | - Bohdan Schneider
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
16
|
Devi G, He L, Xu B, Li T, Shao F. In-stem thiazole orange reveals the same triplex intermediate for pH and thermal unfolding of i-motifs. Chem Commun (Camb) 2016; 52:7261-4. [DOI: 10.1039/c6cc01643j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The unfolding pathway of human telomeric i-motifs was monitored by both monomer and exciplex fluorescence of in-stem thiazole orange. A uniform triplex intermediate was determined upon unfolding i-motifs against either pH or thermal denaturation.
Collapse
Affiliation(s)
- Gitali Devi
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Lei He
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Baochang Xu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Fangwei Shao
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| |
Collapse
|
17
|
GC-elements controlling HRAS transcription form i-motif structures unfolded by heterogeneous ribonucleoprotein particle A1. Sci Rep 2015; 5:18097. [PMID: 26674223 PMCID: PMC4682182 DOI: 10.1038/srep18097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023] Open
Abstract
HRAS is regulated by two neighbouring quadruplex-forming GC-elements (hras-1 and hras-2), located upstream of the major transcription start sites (doi: 10.1093/nar/gku 5784). In this study we demonstrate that the C-rich strands of hras-1 and hras-2 fold into i-motif conformations (iMs) characterized under crowding conditions (PEG-300, 40% w/v) by semi-transitions at pH 6.3 and 6.7, respectively. Nondenaturing PAGE shows that the HRAS C-rich sequences migrate at both pH 5 and 7 as folded intramolecular structures. Chromatin immunoprecipitation shows that hnRNP A1 is associated under in vivo conditions to the GC-elements, while EMSA proves that hnRNP A1 binds tightly to the iMs. FRET and CD show that hnRNP A1 unfolds the iM structures upon binding. Furthermore, when hnRNP A1 is knocked out in T24 bladder cancer cells by a specific shRNA, the HRAS transcript level drops to 44 ± 5% of the control, suggesting that hnRNP A1 is necessary for gene activation. The sequestration by decoy oligonucleotides of the proteins (hnRNP A1 and others) binding to the HRAS iMs causes a significant inhibition of HRAS transcription. All these outcomes suggest that HRAS is regulated by a G-quadruplex/i-motif switch interacting with proteins that recognize non B-DNA conformations.
Collapse
|
18
|
Hoffmann RF, Moshkin YM, Mouton S, Grzeschik NA, Kalicharan RD, Kuipers J, Wolters AHG, Nishida K, Romashchenko AV, Postberg J, Lipps H, Berezikov E, Sibon OCM, Giepmans BNG, Lansdorp PM. Guanine quadruplex structures localize to heterochromatin. Nucleic Acids Res 2015; 44:152-63. [PMID: 26384414 PMCID: PMC4705689 DOI: 10.1093/nar/gkv900] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/21/2015] [Indexed: 12/27/2022] Open
Abstract
Increasing amounts of data support a role for guanine quadruplex (G4) DNA and RNA structures in various cellular processes. We stained different organisms with monoclonal antibody 1H6 specific for G4 DNA. Strikingly, immuno-electron microscopy showed exquisite specificity for heterochromatin. Polytene chromosomes from Drosophila salivary glands showed bands that co-localized with heterochromatin proteins HP1 and the SNF2 domain-containing protein SUUR. Staining was retained in SUUR knock-out mutants but lost upon overexpression of SUUR. Somatic cells in Macrostomum lignano were strongly labeled, but pluripotent stem cells labeled weakly. Similarly, germline stem cells in Drosophila ovaries were weakly labeled compared to most other cells. The unexpected presence of G4 structures in heterochromatin and the difference in G4 staining between somatic cells and stem cells with germline DNA in ciliates, flatworms, flies and mammals point to a conserved role for G4 structures in nuclear organization and cellular differentiation.
Collapse
Affiliation(s)
- Roland F Hoffmann
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Yuri M Moshkin
- Department of Biochemistry, Erasmus University Medical Center, Dr. Molewaterplein 50, NL-3015 GE Rotterdam, The Netherlands
| | - Stijn Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Nicola A Grzeschik
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Ruby D Kalicharan
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Anouk H G Wolters
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Kazuki Nishida
- Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Aleksander V Romashchenko
- Department of Biochemistry, Erasmus University Medical Center, Dr. Molewaterplein 50, NL-3015 GE Rotterdam, The Netherlands Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Jan Postberg
- Helios Medical Centre Wuppertal, Paediatrics Centre, Witten/Herdecke University, Wuppertal, Germany
| | - Hans Lipps
- Institute of Cell Biology, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ody C M Sibon
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Peter M Lansdorp
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medicine, University of British Columbia Vancouver, BC, V5Z 1L3, Canada
| |
Collapse
|
19
|
Zhang FT, Nie J, Zhang DW, Chen JT, Zhou YL, Zhang XX. Methylene blue as a G-quadruplex binding probe for label-free homogeneous electrochemical biosensing. Anal Chem 2014; 86:9489-95. [PMID: 25211349 DOI: 10.1021/ac502540m] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, G-quadruplex sequence was found to significantly decrease the diffusion current of methylene blue (MB) in homogeneous solution for the first time. Electrochemical methods combined with circular dichroism spectroscopy and UV-vis spectroscopy were utilized to systematically explore the interaction between MB and an artificial G-quadruplex sequence, EAD2. The interaction of MB and EAD2 (the binding constant, K ≈ 1.3 × 10(6) M(-1)) was stronger than that of MB and double-stranded DNA (dsDNA) (K ≈ 2.2 × 10(5) M(-1)), and the binding stoichiometry (n) of EAD2/MB complex was calculated to be 1.0 according to the electrochemical titration curve combined with Scatchard analysis. MB was proved to stabilize the G-quadruplex structure of EAD2 and showed a competitive binding to G-quadruplex in the presence of hemin. EAD2 might mainly interact with MB, a positive ligand of G-quadruplex, through the end-stacking with π-system of the guanine quartet, which was quite different from the binding mechanism of dsDNA with MB by intercalation. A novel signal read-out mode based on the strong affinity between G-quadruplex and MB coupling with aptamer/G-quadruplex hairpin structure was successfully implemented in cocaine detection with high specificity. G-quadruplex/MB complex will function as a promising electrochemical indicator for constructing homogeneous label-free electrochemical biosensors, especially in the field of simple, rapid, and noninvasive biochemical assays.
Collapse
Affiliation(s)
- Fang-Ting Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
20
|
Day HA, Pavlou P, Waller ZAE. i-Motif DNA: structure, stability and targeting with ligands. Bioorg Med Chem 2014; 22:4407-18. [PMID: 24957878 DOI: 10.1016/j.bmc.2014.05.047] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/09/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
i-Motifs are four-stranded DNA secondary structures which can form in sequences rich in cytosine. Stabilised by acidic conditions, they are comprised of two parallel-stranded DNA duplexes held together in an antiparallel orientation by intercalated, cytosine-cytosine(+) base pairs. By virtue of their pH dependent folding, i-motif forming DNA sequences have been used extensively as pH switches for applications in nanotechnology. Initially, i-motifs were thought to be unstable at physiological pH, which precluded substantial biological investigation. However, recent advances have shown that this is not always the case and that i-motif stability is highly dependent on factors such as sequence and environmental conditions. In this review, we discuss some of the different i-motif structures investigated to date and the factors which affect their topology, stability and dynamics. Ligands which can interact with these structures are necessary to aid investigations into the potential biological functions of i-motif DNA and herein we review the existing i-motif ligands and give our perspective on the associated challenges with targeting this structure.
Collapse
Affiliation(s)
- Henry A Day
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Pavlos Pavlou
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
21
|
Cui Y, Koirala D, Kang H, Dhakal S, Yangyuoru P, Hurley LH, Mao H. Molecular population dynamics of DNA structures in a bcl-2 promoter sequence is regulated by small molecules and the transcription factor hnRNP LL. Nucleic Acids Res 2014; 42:5755-64. [PMID: 24609386 PMCID: PMC4027204 DOI: 10.1093/nar/gku185] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/03/2014] [Accepted: 02/18/2014] [Indexed: 12/20/2022] Open
Abstract
Minute difference in free energy change of unfolding among structures in an oligonucleotide sequence can lead to a complex population equilibrium, which is rather challenging for ensemble techniques to decipher. Herein, we introduce a new method, molecular population dynamics (MPD), to describe the intricate equilibrium among non-B deoxyribonucleic acid (DNA) structures. Using mechanical unfolding in laser tweezers, we identified six DNA species in a cytosine (C)-rich bcl-2 promoter sequence. Population patterns of these species with and without a small molecule (IMC-76 or IMC-48) or the transcription factor hnRNP LL are compared to reveal the MPD of different species. With a pattern recognition algorithm, we found that IMC-48 and hnRNP LL share 80% similarity in stabilizing i-motifs with 60 s incubation. In contrast, IMC-76 demonstrates an opposite behavior, preferring flexible DNA hairpins. With 120-180 s incubation, IMC-48 and hnRNP LL destabilize i-motifs, which has been previously proposed to activate bcl-2 transcriptions. These results provide strong support, from the population equilibrium perspective, that small molecules and hnRNP LL can modulate bcl-2 transcription through interaction with i-motifs. The excellent agreement with biochemical results firmly validates the MPD analyses, which, we expect, can be widely applicable to investigate complex equilibrium of biomacromolecules.
Collapse
Affiliation(s)
- Yunxi Cui
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Deepak Koirala
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - HyunJin Kang
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Soma Dhakal
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Philip Yangyuoru
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Laurence H Hurley
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
| | - Hanbin Mao
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
22
|
|
23
|
Benabou S, Ferreira R, Aviñó A, González C, Lyonnais S, Solà M, Eritja R, Jaumot J, Gargallo R. Solution equilibria of cytosine- and guanine-rich sequences near the promoter region of the n-myc gene that contain stable hairpins within lateral loops. Biochim Biophys Acta Gen Subj 2014; 1840:41-52. [DOI: 10.1016/j.bbagen.2013.08.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/08/2013] [Accepted: 08/29/2013] [Indexed: 01/08/2023]
|
24
|
Benabou S, Aviñó A, Eritja R, González C, Gargallo R. Fundamental aspects of the nucleic acid i-motif structures. RSC Adv 2014. [DOI: 10.1039/c4ra02129k] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The latest research on fundamental aspects of i-motif structures is reviewed with special attention to their hypothetical rolein vivo.
Collapse
Affiliation(s)
- S. Benabou
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona, Spain
| | - A. Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- E-08034 Barcelona, Spain
| | - R. Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- E-08034 Barcelona, Spain
| | - C. González
- Institute of Physical Chemistry “Rocasolano”
- CSIC
- E-28006 Madrid, Spain
| | - R. Gargallo
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona, Spain
| |
Collapse
|
25
|
G-Quadruplex conformational change driven by pH variation with potential application as a nanoswitch. Biochim Biophys Acta Gen Subj 2013; 1830:4935-42. [DOI: 10.1016/j.bbagen.2013.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/16/2013] [Accepted: 06/19/2013] [Indexed: 12/18/2022]
|
26
|
König SLB, Huppert JL, Sigel RKO, Evans AC. Distance-dependent duplex DNA destabilization proximal to G-quadruplex/i-motif sequences. Nucleic Acids Res 2013; 41:7453-61. [PMID: 23771141 PMCID: PMC3753619 DOI: 10.1093/nar/gkt476] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 05/04/2013] [Accepted: 05/08/2013] [Indexed: 01/29/2023] Open
Abstract
G-quadruplexes and i-motifs are complementary examples of non-canonical nucleic acid substructure conformations. G-quadruplex thermodynamic stability has been extensively studied for a variety of base sequences, but the degree of duplex destabilization that adjacent quadruplex structure formation can cause has yet to be fully addressed. Stable in vivo formation of these alternative nucleic acid structures is likely to be highly dependent on whether sufficient spacing exists between neighbouring duplex- and quadruplex-/i-motif-forming regions to accommodate quadruplexes or i-motifs without disrupting duplex stability. Prediction of putative G-quadruplex-forming regions is likely to be assisted by further understanding of what distance (number of base pairs) is required for duplexes to remain stable as quadruplexes or i-motifs form. Using oligonucleotide constructs derived from precedented G-quadruplexes and i-motif-forming bcl-2 P1 promoter region, initial biophysical stability studies indicate that the formation of G-quadruplex and i-motif conformations do destabilize proximal duplex regions. The undermining effect that quadruplex formation can have on duplex stability is mitigated with increased distance from the duplex region: a spacing of five base pairs or more is sufficient to maintain duplex stability proximal to predicted quadruplex/i-motif-forming regions.
Collapse
Affiliation(s)
- Sebastian L. B. König
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK, Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland and University of Nice-Sophia Antipolis, UMR 7272 CNRS, Institut de 40 Chimie de Nice, 28 Avenue Valrose, 06108 Nice, France
| | - Julian L. Huppert
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK, Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland and University of Nice-Sophia Antipolis, UMR 7272 CNRS, Institut de 40 Chimie de Nice, 28 Avenue Valrose, 06108 Nice, France
| | - Roland K. O. Sigel
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK, Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland and University of Nice-Sophia Antipolis, UMR 7272 CNRS, Institut de 40 Chimie de Nice, 28 Avenue Valrose, 06108 Nice, France
| | - Amanda C. Evans
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK, Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland and University of Nice-Sophia Antipolis, UMR 7272 CNRS, Institut de 40 Chimie de Nice, 28 Avenue Valrose, 06108 Nice, France
| |
Collapse
|
27
|
Brazier JA, Shah A, Brown GD. I-motif formation in gene promoters: unusually stable formation in sequences complementary to known G-quadruplexes. Chem Commun (Camb) 2013; 48:10739-41. [PMID: 23012694 DOI: 10.1039/c2cc30863k] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
I-motif formation has been confirmed in a number of gene promoter sequences known to form G-quadruplex structures. I-motif formation can occur close to physiological temperature and pH for h-tert and PDGF-A. The i-motif structure formed by a HIF-1α promoter sequence shows unexpected stability near neutral pH.
Collapse
Affiliation(s)
- John A Brazier
- School of Pharmacy, University of Reading, Whiteknights, Reading, Berks, RG6 6AD.
| | | | | |
Collapse
|
28
|
Vummidi BR, Alzeer J, Luedtke NW. Fluorescent Probes for G-Quadruplex Structures. Chembiochem 2013; 14:540-58. [DOI: 10.1002/cbic.201200612] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Indexed: 12/19/2022]
|
29
|
Variable-temperature size exclusion chromatography for the study of the structural changes in g-quadruplex. ISRN BIOCHEMISTRY 2013; 2013:631875. [PMID: 25937962 PMCID: PMC4392991 DOI: 10.1155/2013/631875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/26/2013] [Indexed: 11/17/2022]
Abstract
The conformational equilibria of a guanine-rich sequence found at the promoter region of the human c-kit oncogene are studied by means of circular dichroism spectroscopy (CD) and variable-temperature size exclusion chromatography (SEC). It is shown that the wild sequence ckit21 exists as a mixture of monomeric and multimeric G-quadruplexes. Appropriate mutation of several bases in the wild sequence produces the shift from parallel to antiparallel G-quadruplex, as well as the disappearance of multimeric species. The shift from the antiparallel to the parallel conformation induced by temperature is reflected in both CD and SEC profiles.
Collapse
|
30
|
Manaye S, Eritja R, Aviñó A, Jaumot J, Gargallo R. Porphyrin binding mechanism is altered by protonation at the loops in G-quadruplex DNA formed near the transcriptional activation site of the human c-kit gene. Biochim Biophys Acta Gen Subj 2012; 1820:1987-96. [PMID: 23000573 DOI: 10.1016/j.bbagen.2012.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND G-quadruplex DNA structures are hypothesized to be involved in the regulation of gene expression and telomere homeostasis. The development of small molecules that modulate the stability of G-quadruplex structures has a potential therapeutic interest in cancer treatment and prevention of aging. METHODS Molecular absorption and circular dichroism spectra were used to monitor thermal denaturation, acid base titration and mole ratio experiments. The resulting data were analyzed by multivariate data analysis methods. Surface plasmon resonance was also used to probe the kinetics and affinity of the DNA-drug interactions. RESULTS We investigated the interaction between a G-quadruplex-forming sequence in the human c-kit proto-oncogene and the water soluble porphyrin TMPyP4. The role of cytosine and adenine residues at the loops of G-quadruplex was studied by substitution of these residues by thymidines. CONCLUSIONS Here, we show the existence of two binding modes between TMPyP4 and the considered G-quadruplex. The stronger binding mode (formation constant around 107) involves end-stacking, while the weaker binding mode (formation constant around 106) is probably due to external loop binding. Evidence for the release of TMPyP4 upon protonation of bases at the loops has been observed. GENERAL SIGNIFICANCE The results may be used for the design of porphyrin-based anti-cancer molecules with a higher affinity to G-quadruplex structures which may have anticancer properties.
Collapse
Affiliation(s)
- Sintayehu Manaye
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
31
|
Liu G, Myers S, Chen X, Bissler JJ, Sinden RR, Leffak M. Replication fork stalling and checkpoint activation by a PKD1 locus mirror repeat polypurine-polypyrimidine (Pu-Py) tract. J Biol Chem 2012; 287:33412-23. [PMID: 22872635 DOI: 10.1074/jbc.m112.402503] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA sequences prone to forming noncanonical structures (hairpins, triplexes, G-quadruplexes) cause DNA replication fork stalling, activate DNA damage responses, and represent hotspots of genomic instability associated with human disease. The 88-bp asymmetric polypurine-polypyrimidine (Pu-Py) mirror repeat tract from the human polycystic kidney disease (PKD1) intron 21 forms non-B DNA secondary structures in vitro. We show that the PKD1 mirror repeat also causes orientation-dependent fork stalling during replication in vitro and in vivo. When integrated alongside the c-myc replicator at an ectopic chromosomal site in the HeLa genome, the Pu-Py mirror repeat tract elicits a polar replication fork barrier. Increased replication protein A (RPA), Rad9, and ataxia telangiectasia- and Rad3-related (ATR) checkpoint protein binding near the mirror repeat sequence suggests that the DNA damage response is activated upon replication fork stalling. Moreover, the proximal c-myc origin of replication was not required to cause orientation-dependent checkpoint activation. Cells expressing the replication fork barrier display constitutive Chk1 phosphorylation and continued growth, i.e. checkpoint adaptation. Excision of the Pu-Py mirror repeat tract abrogates the DNA damage response. Adaptation to Chk1 phosphorylation in cells expressing the replication fork barrier may allow the accumulation of mutations that would otherwise be remediated by the DNA damage response.
Collapse
Affiliation(s)
- Guoqi Liu
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Combination of chromatographic and chemometric methods to study the interactions between DNA strands. Anal Chim Acta 2012; 722:34-42. [DOI: 10.1016/j.aca.2012.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 02/07/2023]
|
33
|
Selective isolation of G-quadruplexes by affinity chromatography. J Chromatogr A 2012; 1246:62-8. [PMID: 22398385 DOI: 10.1016/j.chroma.2012.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/06/2012] [Accepted: 02/09/2012] [Indexed: 01/13/2023]
Abstract
G-quadruplex (G4) is a characteristic secondary structure of nucleic acids containing repetitive tandem guanines. G4-forming sequences are found prevalent in the human genome by bioinformatics analysis. Accumulating evidence has suggested that G4s are involved in many biological processes. Selective isolation of G4s would be an effective tool in the study of G4s. In this paper, we prepared four affinity matrixes using hemin or a perylene derivative (N,N'-Bis-(2-(amino)ethyl)-3,4,9,10-perylenetetracarboxylic acid diimide, Pery01) as ligand, and investigated the retention behaviors of different G4s on these matrixes. Our experimental results suggest that the π-π stacking interaction between ligand and G-tetrad plays a key role in the selective isolation of G4s, whereas the electrostatic interaction between DNA and matrix causes the nonspecific binding. One matrix prepared by immobilizing Pery01 on polyglycidylmethacrylate (PGMA) beads through an aminocaproic acid spacer exhibits good selectivity for parallel structure G4s and has been successfully used to directly isolate a spiked parallel G4 from plasma.
Collapse
|
34
|
Xu L, Wu W, Ding J, Feng S, Xing X, Deng M, Zhou X. A pyridyl carboxamide molecule selectively stabilizes DNA G-quadruplex and regulates duplex–quadruplex competition. RSC Adv 2012. [DOI: 10.1039/c1ra00851j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Influence of pH, temperature and the cationic porphyrin TMPyP4 on the stability of the i-motif formed by the 5′-(C3TA2)4-3′ sequence of the human telomere. Int J Biol Macromol 2011; 49:729-36. [DOI: 10.1016/j.ijbiomac.2011.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 12/11/2022]
|
36
|
Spectrometric study of the folding process of i-motif-forming DNA sequences upstream of the c-kit transcription initiation site. Anal Chim Acta 2010; 683:69-77. [DOI: 10.1016/j.aca.2010.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 12/30/2022]
|
37
|
Chemical equilibria studies using multivariate analysis methods. Anal Bioanal Chem 2010; 399:1983-97. [DOI: 10.1007/s00216-010-4310-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 10/02/2010] [Accepted: 10/06/2010] [Indexed: 12/30/2022]
|
38
|
Dhakal S, Schonhoft JD, Koirala D, Yu Z, Basu S, Mao H. Coexistence of an ILPR i-motif and a partially folded structure with comparable mechanical stability revealed at the single-molecule level. J Am Chem Soc 2010; 132:8991-7. [PMID: 20545340 DOI: 10.1021/ja100944j] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Investigation of i-motif is of high importance to fully understand the biological functions of G quadruplexes in the context of double-stranded DNA. Whereas single-molecule approaches have profiled G quadruplexes from a perspective unavailable by bulk techniques, there is a lack of similar literature on the i-motif in the cytosine (C)-rich region complementary to G quadruplex-forming sequences. Here, we have used laser tweezers to investigate the structures formed in 5'-(TGTCCCCACACCCC)(2), a predominate variant in the insulin-linked polymorphic region (ILPR). We have observed two species with the change in contour length (DeltaL) of 10.4 (+/-0.1) and 5.1 (+/-0.5) nm, respectively. Since DeltaL of 10.4 nm is located within the expected range for an i-motif structure, we assign this species to the i-motif. The formation of the i-motif in the same sequence has been corroborated by bulk experiments such as Br(2) footprinting, circular dichroism, and thermal denaturation. The assignment of the i-motif is further confirmed by decreased formation of this structure (23% to 1.3%) with pH 5.5 --> 7.0, which is a well-established behavior for i-motifs. In contrast to that of the i-motif, the formation of the second species with DeltaL of 5.1 nm remains unchanged (6.1 +/- 1.6%) in the same pH range, implying that pH-sensitive C:CH(+) pairs may not contribute to the structure as significantly as those to the i-motif. Compared to the DeltaG(unfold) of an i-motif (16.0 +/- 0.8 kcal/mol), the decreased free energy in the partially folded structure (DeltaG(unfold) 10.4 +/- 0.7 kcal/mol) may reflect a weakened structure with reduced C:CH(+) pairs. Both DeltaL and DeltaG(unfold) argue for the intermediate nature of the partially folded structure in comparison to the i-motif. In line with this argument, we have directly observed the unfolding of an i-motif through the partially folded structure. The i-motif and the partially folded structure share similar rupture forces of 22-26 pN, which are higher than those that can stall transcription catalyzed by RNA polymerases. This suggests, from a mechanical perspective alone, that either of the structures can stop RNA transcription.
Collapse
Affiliation(s)
- Soma Dhakal
- Department of Chemistry, Kent State University, Kent, Ohio 44242, USA
| | | | | | | | | | | |
Collapse
|
39
|
Jaumot J, Gargallo R. Using principal component analysis to find correlations between loop-related and thermodynamic variables for G-quadruplex-forming sequences. Biochimie 2010; 92:1016-23. [PMID: 20452394 DOI: 10.1016/j.biochi.2010.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 04/26/2010] [Indexed: 01/07/2023]
Abstract
The application of Principal Component Analysis (PCA) is proposed here as a simple means of revealing correlations between thermodynamic variables corresponding to folding equilibria of intramolecular G-quadruplexes and Watson-Crick duplexes, and the length of loops in the corresponding guanine-rich DNA sequences. To this end, two previously studied data sets were analyzed (Arora and Maiti, J. Phys. Chem. B. 2009 and Kumar and Maiti, Nucleic Acids. Res. 2008). All of the sequences considered shared the common structure 5'- GGG - loop1 - GGG - loop2 - GGG - loop3 - GGG -3'. PCA of these data sets supported a series of correlations between the variables studied. First, the association of loop length with thermodynamic stability and quadruplex structure was corroborated. Secondly, it is proposed that the addition of ethylene glycol produces a stronger stabilization on those sequences showing long loop1 and/or loop3. Thirdly, it is proposed that a low content of adenine in loop1 and/or loop3 will produce an increase in the stability of G-quadruplex and its related Watson-Crick duplex.
Collapse
Affiliation(s)
- Joaquim Jaumot
- Solution Equilibria and Chemometrics Group (Associate Unit UB-CSIC), Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|